
Disciple-COA: From Agent Programming to Agent Teaching

Mihai Boicu MBOICU@GMU.EDU
Gheorghe Tecuci TECUCI@GMU.EDU
Dorin Marcu DMARCU@GMU.EDU
Michael Bowman MBOWMAN3@OSF1.GMU.EDU
Ping Shyr PING.SHYR@NASD.COM
Florin Ciucu FCIUCU@GMU.EDU
Cristian Levcovici CLEVCOVI@GMU.EDU
Learning Agents Laboratory, Department of Computer Science, George Mason University, Fairfax, VA 22030 USA

Abstract
This paper presents Disciple-COA, the most
recent learning agent shell developed in the
Disciple framework that aims at changing the
way an intelligent agent is built: from “being
programmed” by a knowledge engineer, to
“being taught” by a domain expert. Disciple-COA
can collaborate with the expert to develop its
knowledge base consisting of a frame-based
ontology that defines the terms from the
application domain, and a set of plausible
version space rules expressed with these terms.
Its central component is a plausible reasoner that
can distinguish between four types of problem
solving situations: routine, innovative, inventive
and creative. This ability guides the interactions
with the expert during which the agent learns
general rules from specific examples, by
integrating a wide range of knowledge
acquisition and machine learning strategies,
including apprenticeship learning, empirical
inductive learning from examples and
explanations, and analogical learning. Disciple-
COA was developed in the DARPA's High
Performance Knowledge Bases program to solve
the challenge problem of critiquing military
courses of action that were developed as hasty
candidate plans for ground combat operations.
We present the course of action challenge
problem, the process of teaching Disciple-COA to
solve it, and the results of DARPA’s evaluation
in which Disciple-COA demonstrated the best
knowledge acquisition rate and problem solving
performance. We also present a separate
knowledge acquisition experiment conducted at
the Battle Command Battle Lab where experts
with no prior knowledge engineering experience
succeeded to rapidly teach Disciple-COA to
correctly critique courses of action.

1. Introduction
The long term objective of the research done in the
Learning Agents Laboratory of George Mason University
is to develop apprenticeship multistrategy learning
methods and tools that will allow users with little or no
knowledge engineering experience to easily build, teach
and maintain knowledge-based agents. The vision for this
research is to change the way an intelligent agent is built,
from “being programmed” by a knowledge engineer, to
“being taught” by a subject matter expert.

The approach we are investigating, called Disciple, relies
on developing a very capable learning and reasoning
agent that can collaborate with a domain expert to
develop its knowledge base consisting of an ontology that
defines the terms from the application domain, and a set
of general problem solving rules expressed with these
terms. The process of developing the knowledge base of
the agent relies on importing ontological knowledge from
existing repositories of knowledge, and teaching the agent
how to perform various tasks, in a way that resembles
how the domain expert would teach an apprentice while
solving problems in cooperation.

Over the years, the Disciple approach has been developed
and scaled-up continuously, more recently as part of the
1997-1999 High Performance Knowledge Bases (HPKB)
program supported by DARPA and AFOSR (Cohen et al.,
1998). The organizations participating in HPKB were
given the challenge of rapidly developing and updating
knowledge-based systems for solving specially designed
challenge problems. The aim was to test the claim that,
with the latest AI technology, large knowledge bases can
be built and updated quickly and efficiently.

One challenge problem for the first part of the HPKB
program was to build a knowledge-based workaround
agent that is able to plan how a convoy of military
vehicles can “work around” (i.e. circumvent or overcome)
obstacles in their path, such as damaged bridges or

 2

Figure 1: The sketch of COA421.

minefields. To solve this challenge problem we
developed the Disciple-Workaround learning agent,
demonstrating that a knowledge engineer can rapidly
teach Disciple using military engineering manuals and
sample solutions provided by an expert. During the 17
days of DARPA’s evaluation, the KB of Disciple was
increased by 72% (from the equivalent of 5,920 simple
axioms to 10,162 simple axioms) with almost no decrease
in performance. The Disciple agent also achieved the best
scores among all the teams that participated in the
workaround challenge problem, and was selected to
represent the HPKB program at EFX’98, the Air Force’s
show case of the most promising technologies.

One challenge problem for the second part of the HPKB
program was to build a critiquing agent that can evaluate
military Courses of Action (COA) that were developed as
hasty candidate plans for ground combat operations. To
solve this challenge problem we developed the Disciple-
COA learning agent, and in the process we achieved two
significant milestones with the Disciple approach:

• For the first time we developed the knowledge base
around an ontology created by another group
(Teknowledge and Cycorp), demonstrating both the
feasibility of knowledge reuse with the Disciple
approach, and the generality of the Disciple rule
learning and refinement methods. Moreover, the
Disciple-COA agent was taught even more rapidly than
the Disciple-workaround agent, and has again
demonstrated a significantly higher performance than
the other developed critiquers.

• For the first time we conducted a knowledge acquisition
experiment where four domain experts with no prior
knowledge engineering experience received very
limited training in the teaching of Disciple-COA and
then each succeeded to significantly extend its
knowledge base, receiving no or only very limited
support from a knowledge engineer.

In this paper we present the current status of the Disciple
approach which has achieved a significant level of
maturity and holds the promise of realizing the vision
stated above. We will first introduce the COA critiquing
challenge problem. Then we will present the architecture,
knowledge representation, problem solving and learning
methods of the current implementation of the Disciple
approach, illustrating them with some examples from the
COA challenge problem. A significant part of the paper
will be dedicated to the presentation of the evaluations of
Disciple-COA, including the knowledge acquisition
experiment mentioned above. We will then conclude the
paper with a discussion of these results.

2. The COA Challenge Problem

The COA challenge problem consists of rapidly
developing a knowledge-based system that receives as
input the description of a military course of action and

assesses various aspects of the COA, such as its viability,
its correctness, and its strengths and weaknesses with
respect to the principles of war and the tenets of army
operations. The system should also be able to justify the
assessments and to propose improvements to the COA,
helping a military commander to choose the best COA for
accomplishing a certain mission. The input to the COA
system is a COA sketch and a COA statement. The COA
sketch (like the one for COA421 shown in Figure 1) is a
graphical representation of the terrain, locations,
compositions and missions of the friendly and enemy
units. The COA statement explains what the units in a
course of action will do to accomplish the assigned
mission. This is expressed in a restricted but expressive
subset of English, such as “BLUE-TASK-FORCE1, a
balanced task force, attacks to seize OBJ-PASS, in order to
enable the completion of seize OBJ-SLAM by BLUE-ARMOR-
BRIGADE1”.

In the HPKB program, the COA challenge problem was
solved by building an integrated system composed of
several critiquers, each built by a different team, to solve
a part of the overall problem. The participating teams
were Teknowledge-Cycorp-AIAI, ISI/Expect, ISI/Loom,
U.Mass, and GMU Disciple. All the teams had to share an
input ontology and to use the same internal representation
of the input generated automatically by Teknowledge and
AIAI from COA descriptions provided by Alphatech.

We have developed a COA critiquer, called Disciple-COA,
that identifies the strengths and the weaknesses of a
course of action with respect to the principles of war and
the tenets of army operations. There are nine principles of
war: objective, offensive, mass, economy of force,
maneuver, unity of command, security, surprise, and
simplicity. They provide general guidance for the conduct

“There is a weakness in COA421 with respect to the Principle of
Security because there are no actions taken to destroy RED-CSOP1
which is an enemy unit assigned to collect intelligence and protect
against surprise. The COA fails to call for aggressive security/counter-
reconnaissance actions, destroying enemy intelligence collection units
and activities.”

Figure 2: A solution generated by Disciple-COA.

 3

of war at the strategic, operational and tactical levels. The
tenets of army operations describe the characteristics of
successful operations. They are: initiative, agility, depth,
synchronization and versatility. Figure 2, for instance,
shows a weakness identified by Disciple-COA in COA421.

3. The Current Version of Disciple

The architecture of the current version of Disciple, called
Disciple-COA, is represented in Figure 3. At a general
level, it is organized into three main components:

• = the intelligent user interface component that allows
the experts to communicate with Disciple in a
manner as close as possible to the way they
communicate in their environment,

• = the multistrategy learning and problem solving
component which is responsible for knowledge
formation and problem solving, and contains specific
modules for rule learning and refinement, as well as
cooperative and autonomous problem solving,

• = the knowledge management component that contains
modules for knowledge base management, import of
ontologies, and knowledge translation between CYC
and Disciple.

The process of building the Disciple-COA critiquer
included two main phases, the development of the domain
ontology and the teaching of the agent how to critique
COAs.

One significant challenge was that each critiquer had to
use the same domain ontology that was built by the
Teknowledge-Cycorp team for their critiquer developed
with the CYC system (Lenat, 1995). Consequently, the
ontology of Disciple-COA was created by importing the
ontology from CYC and by further extending it with other
necessary elements. Disciple’s ontology includes
hierarchies of objects, features and tasks, represented as
frames, according to the OKBC knowledge model

(Chaudhri et al. 1998). A fragment of the object ontology
is presented in Figure 4. It shows a part of its upper level
and a detail from its lower level. The ontology defines the
main concepts from the COA domain, such as
organizations, equipment, military tasks, purposes, and
geographical concepts. A significant role of the object
ontology in Disciple is that of being the generalization
hierarchy for learning.

The teaching of Disciple to critique COAs is done by
using the cooperative problem solver. The problem
solving framework is task reduction, where a task to be
accomplished by the agent is successively reduced to
simpler tasks until the initial task is reduced to a set of
elementary tasks that can be immediately performed. The
middle part of Figure 5 shows a sequence of task
reduction steps, created jointly by the domain expert and
Disciple-COA, for assessing to what extend COA421
conforms to the Principle of Security. In order to perform
this assessment, the expert and Disciple need a certain
amount of information about COA421 which is obtained by
asking a series of questions. These questions and the
corresponding answers guide the reduction of assessment
tasks into more informed ones, and ultimately into final
assessments. For instance, the second question asks
whether there is any enemy reconnaissance unit present in
COA421. The answer identifies RED-CSOP1 as being such a
unit because it is performing the task SCREEN1. Therefore,
the task of assessing security of COA421 with respect to
countering enemy reconnaissance is now reduced to the
better defined task of assessing security when enemy
reconnaissance is present. The next question to ask is
whether the enemy reconnaissance unit is destroyed or
not. In the case of COA421, RED-CSOP1 is not destroyed.
Therefore one can conclude that there is a weakness in
security because enemy reconnaissance is not countered.
As can be seen in Figure 5, tasks are represented by a
name and a sequence of feature-value pairs. In addition,
the expert may provide their description in natural
language. This natural language description (which is not

Figure 3: The architecture of Disciple-COA.

Instances
Solving
Rules

Multistrategy Learning
and Problem Solving

Intelligent User
Interface

Autonomous
Problem
Solver

Rule
Composer

Knowledge Base Management

Ontology
Import

Theory
Explanation

Ontology

Instances
Solving
Problem

Rules

Cooperative
Problem
Solver

Natural
Language

Generation

Ontology
Editors and
Browsers

Rule
Learner

Rule
Refiner

Figure 4: Fragment of the Disciple-COA ontology.

ACTION

<OBJECT>

ORGANIZATION

MILITARY-TASK

EQUIPMENTGEOGRAPHICAL-
REGION PLAN

OBJECT-ACTED-ON

IS-TASK-OF-OPERATION

PENETRATE1

INSTANCE-OF

PENETRATE--
MILITARY-TASK

ATTACK2

RED-MECH-COMPANY4

INDICATES-MISSION-TYPE

IS-OFFENSIVE-ACTION-FOR
"military offensive operation"

"military offensive operation"

FORCE-RATIO 10.6

RECOMMENDED-FORCE-RATIO 3
HAS-SURPRISE-FORCE-RATIO 6

SUBCLASS-OF

MILITARY-MANEUVER

COMPLEX-
MILITARY-TASK

MILITARY-ATTACK

MILITARY-EVENT

 4

shown in Figure 5 because of the lack of space) is
generalized into a natural language pattern, allowing
Disciple-COA to generate solutions in natural language,
like the one from Figure 2.

The task reduction steps, such as the ones from the middle
of Figure 5, are generated through a cooperative problem
solving process, where some steps are contributed by
Disciple-COA, and some are contributed by the domain
expert. Through this process the expert will teach the
agent in a natural manner, similar to how the expert
would teach a human apprentice. The goal of the agent is
to learn from the expert and from its problem solving
attempts, developing a knowledge base that would allow
it to exhibit the same problem solving performance as the
human expert. We call the set of all correct solutions
generated with this "final" knowledge base the Target
Solution Space (see Figure 6). However, part of the
Target Solution Space is not even included in the Current
Representation Space of the agent which will have to be
extended by introducing new terms in the ontology. The
agent-expert interactions are guided by the cooperative
problem solver of Disciple-COA that can distinguish
between four types of problem solving situations: routine,
innovative, inventive and creative (see Figure 6). Initially,
when Disciple has few problem solving rules, most
problem solving situations are creative because no rules
are applicable and the task reductions need to be provided
by the expert. From each such creative task reduction step

Disciple will learn a new task reduction rule. For instance,
from the last task reduction step in Figure 5 (consisting of
a task, a question, an answer and a subtask), Disciple-COA
learned the rule shown in the right hand side of Figure 5.
In essence, a rule is a complex IF-THEN structure that
specifies one or several conditions under which the task
from the IF part can be reduced to the task(s) from the
THEN part. Each rule includes a main condition that has
to be satisfied in order for the rule to be applicable. In
addition, it may include several except-when conditions
(that should not hold in order for the rule to be
applicable), "except-for" conditions (that specify
instances that are negative exceptions of the rule) and
"for" conditions (that specify positive exceptions).
Partially learned rules, such as the ones showed in Figure
5, do not contain exact conditions, but plausible version
spaces for these conditions. Each such plausible version
space is represented by a plausible upper bound condition
which, as an approximation, is more general than the
exact (but not yet known) condition, and a plausible lower
bound condition which, as an approximation, is less
general than the exact condition. The rule from the right
hand side of Figure 5 contains a plausible version space
for the main condition and a plausible version space for
an except-when condition. These version spaces are
generated automatically by Disciple-COA from the
creative reduction and its explanations, as discussed
below. The generalizations of these explanations are also

Rule: R$ASWCER-001 Assess COA wrt Principle of Security
for coa COA421

Does the COA include security and
counter-recon actions, a security element,

a rear element, and identify risks?

Plausible Upper Bound
?O1 IS COA-SPECIFICATION-MICROTHEORY
?O2 IS MODERN-MILITARY-UNIT--DEPLOYABLE

SOVEREIGN-ALLEGIANCE-OF-ORG ?O4
TASK ?O3

?O3 IS INTELLIGENCE-COLLECTION--MIL-TASK
?O4 IS RED--SIDE

I consider enemy reconnaissance

Assess security wrt countering enemy
reconnaissance

for coa COA421

Is an enemy reconnaissance unit present?

Yes, the enemy unit RED-CSOP1 is
performing the action SCREEN1 which

Is a reconnaissance action.

Assess security when enemy recon is
present

for coa COA421
for unit RED-CSOP1
for recon action SCREEN1

Is the enemy unit destroyed?

No, RED-CSOP1 is not countered

Report weakness in security because
enemy recon is not countered

for coa COA421
for unit RED-CSOP1
for recon action SCREEN1
with importance “high”

IF the task to accomplish is:
Assess-security-wrt-countering-enemy-
reconnaissance

for-coa ?O1
Question: Is an enemy reconnaissance
unit present?
Answer: Yes, the enemy unit ?O2 is
performing the action ?O3 which is a
reconnaissance action.

Explanation:
•?O2 SOVEREIGN-ALLEGIANCE-OF-ORG ?O4 IS RED--SIDE
•?O2 TASK ?O3 IS INTELLIGENCE-COLLECTION--MIL-TASK

THEN accomplish the task:
Assess-security-when-enemy-recon-is-present

for-coa ?O1
for-unit ?O2
for-recon-action ?O3

Plausible Lower Bound
?O1 IS COA-SPECIFICATION-MICROTHEORY
?O2 IS MECHANIZED-INFANTRY-UNIT--MIL-SPECIALTY

SOVEREIGN-ALLEGIANCE-OF-ORG ?O4
TASK ?O3

?O3 IS SCREEN--MILITARY TASK
?O4 IS RED--SIDE

Rule: R$ASWERIP-002

Plausible Upper Bound
?O1 IS COA-SPECIFICATION-MICROTHEORY
?O2 IS MODERN-MILITARY-UNIT--DEPLOYABLE
?O3 IS INTELLIGENCE-COLLECTION--MILITARY-TASK
?S1 IS “HIGH”

Explanation:
•?S1 IS ALWAYS “HIGH”

IF the task to accomplish is:
Assess-security-when-enemy-recon-is-
present

for-coa ?O1
for-unit ?O2
for-recon-action ?O3

Question: Is the enemy unit destroyed?
Answer: No, ?O2 is not countered

Plausible Lower Bound
?O1 IS COA-SPECIFICATION-MICROTHEORY
?O2 IS MODERN-MILITARY-UNIT--DEPLOYABLE
?O3 IS INTELLIGENCE-COLLECTION--MILITARY-TASK
?S1 IS “HIGH”

THEN accomplish the task:
Report-weakness-in-security-because-
enemy-recon-is-not-countered

for-coa ?O1
for-unit ?O2
for-recon-action ?O3
with-importance ?S1

Failure Explanation:
•?O4 OBJECT-ACTED-ON ?O2
•?O4 IS DESTROY-MILITARY-TASK

Plausible Upper Bound
?O4 IS DESTROY-MILITARY-TASK

OBJECT-ACTED-ON ?O2
Plausible Lower Bound
?O4 IS DESTROY-MILITARY-TASK

OBJECT-ACTED-ON ?O2

M
ai

n
C

on
di

tio
n

M
ai

n
C

on
di

tio
n

Ex
ce

pt
 W

he
n

C
on

di
tio

n

Figure 5: Illustration of cooperative problem solving and learning.

 5

included in the learned rule. In addition, the rule also
contains the generalizations of the natural language
phrases representing the Question and its Answer from
the creative reduction. The Questions and the Answers
play multiple roles in Disciple-COA. They help the expert
in formalizing the problem solving process as task
reduction. They are used by the natural language
generation module of Disciple to generate the question
and answer part of a task reduction step obtained by
instantiating a rule. The elements recognized by Disciple
in these natural language phrases (such as “RED-CSOP1”)
represent hints for the explanation generation process
discussed below.

To learn a rule from a creative reduction, the agent will
first try to find an explanation of why the reduction is
correct. An explanation is a path of objects and features in
the object ontology, and identifies the important
characteristics of the objects from the creative reduction
that should be kept in any correct generalization of the
reduction. This significantly limits the number of
candidates for the rule to be learned from the current
creative reduction. All these candidate rules are
represented by Disciple-COA as a plausible version space
IF-THEN task reduction rule (Tecuci, 1998).

Finding the explanation for an example is also a
cooperative process, where the agent proposes
explanations ordered by their plausibility and the expert
selects the correct ones. To generate the explanations, the
agent uses an ordered set of heuristics for analogical
reasoning. The heuristics are based on the hierarchies of
tasks and features from Disciple’s ontology, and on
different types of structure similarity between the current
example and the existing rules. In essence, Disciple
identifies the rules that include tasks similar to the current
example. Then it uses the explanations from which these
rules have been learned as a guide to search for
explanations of the current example. The expert may also
help the agent in finding the explanations by proving
hints. Guidance is also provided by the question and the
answer from the example that identify the objects that
should be part of the explanation, even though Disciple-
COA does not have the ability to understand these natural
language phrases.

As Disciple-COA learns plausible version space rules, it
can use them to propose routine, innovative or inventive
solutions to the current problems. The routine solutions
are those that satisfy the plausible lower bound conditions
of the task reduction rules and are very likely to be
correct. Those that are not correct are kept as exceptions
to the rule. The innovative solutions are those that satisfy
the plausible upper bound conditions. These solutions
may or may not be correct, but in each case will lead to a
refinement of the task reduction rules that generated them.
For instance, the second task reduction step in Figure 5 is
an innovative solution that has been accepted by the
expert and has led to the generalization of the plausible
lower bound condition of the rule shown in the left hand

side of Figure 5. The inventive solutions are based on
weaker forms of plausible reasoning (such as partial
matching of the plausible conditions of the rules, and
tasks similarity based on the structure of the ontology).
An inventive task reduction step is based on several rules,
and is generally a novel reduction of the tasks from these
rules. From inventive solutions the agent will learn new
plausible task reduction rules, as with the creative
solutions, except that in such cases Disciple has more
knowledge to guide the learning process.

Our research on plausible version spaces has its origins in
Mitchell's influential work on version spaces and his
candidate elimination algorithm (Mitchell, 1997),
extending them along several dimensions, and leading to
a powerful and practical mixed-initiative multistrategy
learning approach that synergistically integrates a wide
range of knowledge acquisition and machine learning
strategies, including apprenticeship learning, empirical
inductive learning from examples and explanations, and
analogical learning. This approach is based on a powerful
knowledge representation language that includes the
frame-based OKBC knowledge model for the
representation of the ontological knowledge, and complex
task reduction rules with multiple conditions. Moreover,
we do not make the assumption that the representation
space for learning needs to be completely defined before
learning can take place. On the contrary, the
representation language is assumed incomplete and
partially incorrect, and is itself evolving during rule
learning through the improvement of the ontology.
Because the learning process takes place in an evolving
representation language, the various plausible bounds of a
rule are subject to heuristic transformations that involve
both generalization and specialization operations for each
bound. These transformations are guided by hints,
explanations and analogies. Therefore, the learning
process is very efficient and does not suffer from any
combinatorial explosion. Also, learning may take place
even in the presence of exceptions, when there is no rule
that discriminates between all the positive examples and
all the negative examples.

Final
Representation
Space

Current
Representation
Space

Target
Solution

Space

Correct routine
solutions Incorrect

routine
solutions

Incorrect
innovative
solutions

Correct innovative
solutions

Correct inventive
solutions

Incorrect
inventive
solutions

Correct creative
solutions

Figure 6: Types of generated solutions.

 6

4. Evaluation of Disciple-COA

With respect to the Disciple approach and its current
implementation in Disciple-COA, we formulate the
following claims that have been tested during the
intensive evaluations of the HPKB program:
• they significantly speed up the process of building and

updating a high performance knowledge base;
• they enable rapid learning of problem solving

knowledge from domain experts, with limited
assistance from knowledge engineers;

• the learned problem solving knowledge is of a good
enough quality to assure a high degree of correctness of
the solutions generated by the agent;

• the acquired problem solving knowledge assures a high
performance of the problem solver.

The main DARPA evaluation took place during the period
July 6-16, 1999, and was organized in five evaluation
items of increasing difficulty. Each item consisted of
several COAs and assessment questions to be answered.
Item1 consisted of COAs and questions that were
previously provided by DARPA to guide the development
of the COA critiquing agents. Item2 included new test
questions about the same COAs. Items 3, 4, and 5
consisted of previously unseen COAs that were
increasingly more complex and required further
development of the COA agents in order to properly
answer the assessment questions. Each of the Items 3, 4
and 5 consisted of two phases, a testing phase, and a
repair phase. In the testing phase each team had to
provide initial system responses. Then the evaluator
issued the model answers and each team had a limited
amount of time to repair its system and to perform further
knowledge acquisition, to generate revised system
responses.

In addition to GMU, three other research groups
developed COA critiquers as part of the HPKB program.
Teknowledge and Cycorp developed a critiquer based on
the CYC system (Lenat, 1995), taking advantage of
CYC’s large knowledge repository and inferential
capabilities. The Expect group from ISI based its critiquer
on the Expect shell for problem solving and knowledge
acquisition (Kim and Gil, 1999). Finally, the LOOM
group from ISI developed a case-based critiquer as an
extension to the Loom system (MacGregor, 1999). The
responses of each system were scored by a team of
domain experts along the following dimensions and
associated weights: Correctness-50% (matches model
answer or is otherwise judged to be correct), Justification-
30% (scored on presence, soundness, and level of detail),
Lay Intelligibility-10% (degree to which a lay observer
can understand the answer and the justification), Sources-
10% (degree to which appropriate sources are noted), and
Proactivity-10% extra credit (appropriate corrective
actions or other information suggested to address the
critique). Based on these scores, several classes of metrics

have been computed, including Recall and Precision.
Recall is obtained by dividing the score for all answers
provided by a critiquer by the total number of model
answers provided by the evaluator. “Precision” is
obtained by dividing the same score by the total number
of correct answers (both the model answers provided by
the evaluator and the new answers provided by the
critiquer). The results obtained by the four evaluated
critiquers are presented in Table 1.

Figure 7 presents the breakdown by criteria of the Recall
and Precision metrics, showing that Disciple-COA not
only obtained the best overall results, but was also the
only system to obtain high scores at each of these criteria.

Figure 8 compares the number of model answers provided
by the evaluators (the 1st bar corresponds to evaluation
items 3 and 4, and the 3rd bar corresponds to the
evaluation Item 5), with the number of correct answers
generated by Disciple-COA (the 2nd and the 4th bar). The
bottom part of the 2nd and the 4th bar show the number of
model answers matched by Disciple-COA, and the upper
part shows the additional correct answers generated by
Disciple-COA. The large proportion of these new answers
demonstrates that a very knowledgeable expert can train
Disciple to exhibit much of his or her expertise.

Table 1. Evaluation of the critiquers’ performance

57.48%81.99%76.01%62.61%Precision

70.20%114.69%63.71%56.81%Recall

ISI-LoomDiscipleISI-ExpectTek/CycMetric

57.48%81.99%76.01%62.61%Precision

70.20%114.69%63.71%56.81%Recall

ISI-LoomDiscipleISI-ExpectTek/CycMetric

Tek/Cyc ISI-Expect GMU ISI-LoomTek/Cyc ISI-Expect GMU ISI-Loom

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

Correctness Proactivity Justification Intelligibility Source Total

Recall

IntelligibilityCorrectness Justification Source Proactivity Total0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%
100.00% Precision

Figure 7: Recall and Precision breakdown by criteria.

 7

A very significant aspect is that all these results were
obtained with an agent that was taught very rapidly.
Figure 9 shows the evolution of the knowledge base of the
Disciple-COA critiquer during the evaluation phase.
Overall, the KB increased by 46% in 8 days, from a size
of 6229 simple axioms equivalent to a size of 9092 simple
axioms equivalent. The final knowledge base contained
801 concepts, 444 object and task features, 360 tasks and
342 PVS rules. Also, each COA was represented with
around 1500 facts.

5. Direct Knowledge Acquisition from Experts

In August 1999 we conducted a one week knowledge
acquisition (KA) experiment with Disciple-COA at the US
Army Battle Command Battle Lab in Fort Leavenworth,
Kansas, to test the claim that domain experts that do not
have prior knowledge engineering experience can teach
Disciple-COA. The experiment involved four such military
experts and had three phases: a joint training phase (day 1
to 3), an individual KA experiment (day 4), and a joint
discussion of the experiment (day 5). The entire
experiment was video-taped. The training for the
experiment included a detailed presentation of Disciple's
knowledge representation, problem solving and learning
methods and tools. For the knowledge acquisition
experiment itself, each expert received a copy of Disciple-
COA with a partial knowledge base. This KB was obtained

by removing the tasks and the rules from the complete KB
of Disciple-COA. That is, the KB contained the complete
ontology of objects, object features, and task features. We
also provided the experts with the descriptions of three
COAs, COA411, COA421, and COA51, to be used for training
Disciple. These were the COAs used in the final phases of
the DARPA’s evaluation of all the critiquers. Finally, we
provided and discussed with the experts the modeling of
critiquing these COAs with respect to the principles of
offensive and security. That is, we provided the experts
with specific task reductions like the one from the middle
of Figure 5, to guide the teaching of Disciple by the
experts. After that, each expert taught Disciple-COA
independently, while being supervised by a knowledge
engineer who’s role was to help the expert if he reached
an impasse while using Disciple.

Figure 10 shows the evolution of the KB during the
teaching process for one of the experts, being
representative for all the four experts. In the morning the
expert taught Disciple to critique COAs with respect to
the Principle of Offensive and in the afternoon he taught it
to critique COAs with respect to the Principle of Security.
In both cases the expert used first COA411, then COA422
and then COA51. As one can see from Figure 10, Disciple
initially learned more rules, and then the emphasis shifted
to rule refinement. Therefore, the increase in the KB size
is greater toward the beginning of the training process for
each principle. On average, the teaching for the Principle
of Offensive took 101minutes. During this time Disciple
learned 14 tasks and 14 rules (147 simple axioms
equivalent). The teaching for security took place in the
afternoon and consisted of 72 minutes of expert-Disciple
interactions. During this time Disciple learned 14 tasks
and 12 rules (136 simple axioms equivalent). There was
no or very limited assistance from the knowledge
engineer with respect to teaching. The knowledge
acquisition rate obtained during the experiment was very
high (~ 9 tasks and 8 rules / hour expert, or 98 simple
axioms equivalent/hour). At the end of this training
process, Disciple-COA was able to correctly identify 17
strengths and weakness of the 3 COAs with respect to the

0

10

20

30

40

50

60

Week 1 Model
Answers

Week 1 GMU Post-
Repair

Week 2 Model
Ansers

Week 2 GMU Post-
Repair

GMU Inovative Answers
GMU Model Answer Matches
Model Answers

Item 5Item 3 & 4
Figure 8: Disciple’s model and new answers.

Figure 9: The evolution of the KB during evaluation.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

7/8/99 7/9/99 7/10/99 7/11/99 7/12/99 7/13/99 7/14/99 7/15/99 7/16/99

Ontology Tasks Rules Knowledge Base

 Rule Axioms

Concept Axioms

Task Axioms

Total Axioms 46% increase of KB size

Figure 10: KB’s evolution during the KA experiment.

0

50

100

150

200

250

300

350

400

Initia
l

O411
(1)

O42
1(1

)

O51(1
)

O411
(2)

Offe
ns

ive

S411
(1)

S421
(1)

S51(1
)

S411
(2)

Sec
uri

ty

Tasks Rules Task and Rules

 Task+Rule axioms

Rule axioms

Task axioms

 8

principles of offensive and security.

After the experiment, each expert was asked to fill in a
detailed questionnaire designed to collect subjective data
for usability evaluation. The questionnaire was organized
into three major sections: a) 6 overall questions, b) 40
detail questions, and c) comments and recommendation.
The questions addressed three main dimensions of
evaluation: effect on task performance, system usability,
and system fit. In addition, each such dimension
considered various criteria (e.g. system fit with the user or
system fit with the organization), and even sub-criteria.
All the answers took into account that Disciple-COA was a
research prototype and not a commercial product, and
were rated based on a scale of 1 to 5, with 1 denoting not
at all and 5 denoting very. For illustration, Table 2 shows
three questions and the answers provided by the four
experts. An analysis of all the answers revealed again
very high scores for the Disciple approach (82.39% on the
fitness of the Disciple critiquing agent to their
organizations, 76.32% in the effect that Disciple-COA
would have on their task performance, and 73.72% in
system’s usability).

6. Conclusion

The evaluation results demonstrate that the Disciple
approach has reached a high level of maturity, being
usable for teaching agents to solve complex real world
problems. Figure 5 suggests the usefulness of this
approach for knowledge acquisition. In the traditional,
knowledge engineering approach to agent development, a
knowledge engineer would need to manually define and
debug rules like the ones in Figure 5. With Disciple, the
domain expert (possibly assisted by a knowledge
engineer) needs only to define specific reductions like
those in the middle of Figure 5, because Disciple will
learn and refine the corresponding rules. The current
results provide a very encouraging support to the vision
that, through further development of the Disciple
approach, it will be some day possible for a normal user
that has very limited knowledge engineering experience,

to develop his or her personal assistant, as easily as such a
person uses an email program, a word processor, or an
internet browser today.

Acknowledgements

This research was supported by AFOSR and DARPA
through the grant F49620-97-1-0188, as part of the HPKB
program. The evaluation of the COA critiquers was
conducted by Alphatech. The experts that participated in
the BCBL knowledge acquisition experiment were LTC
John N. Duquette, LTC Jay E. Farwell, MAJ Michael P.
Bowman, and MAJ Dwayne E. Ptaschek. Bogdan
Stanescu, Liviu Panait, Cristina Cascaval and Tom
Jenkins are contributing to the new version of Disciple.

References

Alphatech, Inc. (1999). HPKB Course of Action
Challenge Problem Specification. Burlington, MA.

Boicu M., Wright K., Marcu D., Lee S.W., Bowman M.
and Tecuci G. (1999). The Disciple Integrated Shell and
Methodology for Rapid Development of Knowledge-
Based Agents. AAAI-99/IAAI-99. Proceedings of the
Intelligent Systems Demonstrations, AAAI Press, Menlo
Park, CA

Chaudhri, V.K., Farquhar, A., Fikes, R., Park, P.D., and
Rice, J.P. (1998). OKBC: A Programmatic Foundation
for Knowledge Base Interoperability. Proceedings of
the AAAI-98, pp. 600 – 607, Menlo Park, CA: AAAI
Press.

Cohen P., Schrag R., Jones E., Pease A., Lin A., Starr B.,
Gunning D., and Burke M. (1998). The DARPA High-
Performance Knowledge Bases Project, AI Magazine,
19(4),25-49.

Kim, J. and Gil, Y. (1999). Deriving Expectations to
Guide Knowledge Base Creation. Proceedings of the
AAAI-99/IAAI-99. AAAI Press, Menlo Park, CA.

Lenat, D.B. (1995). CYC: A Large-scale Investment in
Knowledge Infrastructure Comm of ACM 38(11):33-38.

Mitchell, T.M. (1997). Machine Learning. McGraw-Hill.

MacGregor, R. (1999). Retrospective on LOOM.
Available online as: http://www.isi.edu/isd/LOOM/
papers/macgregor/Loom_Retrospective.html,

Tecuci, G. (1998). Building Intelligent Agents: An
apprenticeship multistrategy learning theory, methodo-
logy, tool and case studies. London, Academic Press.

Tecuci, G., Boicu, M., Wright, K., Lee, S.W., Marcu, D.
and Bowman, M. (1999). An Integrated Shell and
Methodology for Rapid Development of Knowledge-
Based Agents, Proceedings of the AAAI-99/IAAI-99.
AAAI Press, Menlo Park, CA.

Table 2. Sample questions answered by the experts.

Do you think that Disciple
is a useful tool for
Knowledge Acquisition?

Do you think that Disciple
is a useful tool for Problem
Solving?

Were the procedures/
processes used in Disciple
compatible with Army
doctrine and/or decision
making processes?

Questions Answers
• Rating 5. Absolutely! The potential use of this tool by
domain experts is only limited by there imagination - not
their AI programming skills.
• 5
• 4
• Yes, it allowed me to be consistent with logical thought.

• Rating 5. As a minimum yes, as a maximum—better!
• This again was done very well.
• 4
• 4

• Rating 5. Yes.
• 5 (absolutely)
• 4
• Yes. As it develops and becomes tailored to the user,
it will simplify the tedious tasks.

