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Abstract 
This paper presents Disciple-COA, the most 
recent learning agent shell developed in the 
Disciple framework that aims at changing the 
way an intelligent agent is built: from “being 
programmed” by a knowledge engineer, to 
“being taught” by a domain expert. Disciple-COA 
can collaborate with the expert to develop its 
knowledge base consisting of a frame-based 
ontology that defines the terms from the 
application domain, and a set of plausible 
version space rules expressed with these terms. 
Its central component is a plausible reasoner that 
can distinguish between four types of problem 
solving situations: routine, innovative, inventive 
and creative. This ability guides the interactions 
with the expert during which the agent learns 
general rules from specific examples, by 
integrating a wide range of knowledge 
acquisition and machine learning strategies, 
including apprenticeship learning, empirical 
inductive learning from examples and 
explanations, and analogical learning. Disciple-
COA was developed in the DARPA's High 
Performance Knowledge Bases program to solve 
the challenge problem of critiquing military 
courses of action that were developed as hasty 
candidate plans for ground combat operations. 
We present the course of action challenge 
problem, the process of teaching Disciple-COA to 
solve it, and the results of DARPA’s evaluation 
in which Disciple-COA demonstrated the best 
knowledge acquisition rate and problem solving 
performance. We also present a separate 
knowledge acquisition experiment conducted at 
the Battle Command Battle Lab where experts 
with no prior knowledge engineering experience 
succeeded to rapidly teach Disciple-COA to 
correctly critique courses of action. 

1.  Introduction 
The long term objective of the research done in the 
Learning Agents Laboratory of George Mason University 
is to develop apprenticeship multistrategy learning 
methods and tools that will allow users with little or no 
knowledge engineering experience to easily build, teach 
and maintain knowledge-based agents. The vision for this 
research is to change the way an intelligent agent is built, 
from “being programmed” by a knowledge engineer, to 
“being taught” by a subject matter expert.  

The approach we are investigating, called Disciple, relies 
on developing a very capable learning and reasoning 
agent that can collaborate with a domain expert to 
develop its knowledge base consisting of an ontology that 
defines the terms from the application domain, and a set 
of general problem solving rules expressed with these 
terms. The process of developing the knowledge base of 
the agent relies on importing ontological knowledge from 
existing repositories of knowledge, and teaching the agent 
how to perform various tasks, in a way that resembles 
how the domain expert would teach an apprentice while 
solving problems in cooperation. 

Over the years, the Disciple approach has been developed 
and scaled-up continuously, more recently as part of the 
1997-1999 High Performance Knowledge Bases (HPKB) 
program supported by DARPA and AFOSR (Cohen et al., 
1998). The organizations participating in HPKB were 
given the challenge of rapidly developing and updating 
knowledge-based systems for solving specially designed 
challenge problems. The aim was to test the claim that, 
with the latest AI technology, large knowledge bases can 
be built and updated quickly and efficiently.  

One challenge problem for the first part of the HPKB 
program was to build a knowledge-based workaround 
agent that is able to plan how a convoy of military 
vehicles can “work around” (i.e. circumvent or overcome) 
obstacles in their path, such as damaged bridges or 
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Figure 1: The sketch of COA421. 

minefields. To solve this challenge problem we  
developed the Disciple-Workaround learning agent, 
demonstrating that a knowledge engineer can rapidly 
teach Disciple using military engineering manuals and 
sample solutions provided by an expert. During the 17 
days of DARPA’s evaluation, the KB of Disciple was 
increased by 72% (from the equivalent of 5,920 simple 
axioms to 10,162 simple axioms) with almost no decrease 
in performance. The Disciple agent also achieved the best 
scores among all the teams that participated in the 
workaround challenge problem, and was selected to 
represent the HPKB program at EFX’98, the Air Force’s 
show case of the most promising technologies.  

One challenge problem for the second part of the HPKB 
program was to build a critiquing agent that can evaluate 
military Courses of Action (COA) that were developed as 
hasty candidate plans for ground combat operations. To 
solve this challenge problem we developed the Disciple-
COA learning agent, and in the process we achieved two 
significant milestones with the Disciple approach: 

• For the first time we developed the knowledge base 
around an ontology created by another group 
(Teknowledge and Cycorp), demonstrating both the 
feasibility of knowledge reuse with the Disciple 
approach, and the generality of the Disciple rule 
learning and refinement methods. Moreover, the 
Disciple-COA agent was taught even more rapidly than 
the Disciple-workaround agent, and has again 
demonstrated a significantly higher performance than 
the other developed critiquers. 

• For the first time we conducted a knowledge acquisition 
experiment where four domain experts with no prior 
knowledge engineering experience received very 
limited training in the teaching of Disciple-COA and 
then each succeeded to significantly extend its 
knowledge base, receiving no or only very limited 
support from a knowledge engineer. 

In this paper we present the current status of the Disciple 
approach which has achieved a significant level of 
maturity and holds the promise of realizing the vision 
stated above. We will first introduce the COA critiquing 
challenge problem. Then we will present the architecture, 
knowledge representation, problem solving and learning 
methods of the current implementation of the Disciple 
approach, illustrating them with some examples from the 
COA challenge problem. A significant part of the paper 
will be dedicated to the presentation of the evaluations of 
Disciple-COA, including the knowledge acquisition 
experiment mentioned above. We will then conclude the 
paper with a discussion of these results. 

2.  The COA Challenge Problem 

The COA challenge problem consists of rapidly 
developing a knowledge-based system that receives as 
input the description of a military course of action and 

assesses various aspects of the COA, such as its viability, 
its correctness, and its strengths and weaknesses with 
respect to the principles of war and the tenets of army 
operations. The system should also be able to justify the 
assessments and to propose improvements to the COA, 
helping a military commander to choose the best COA for 
accomplishing a certain mission. The input to the COA 
system is a COA sketch and a COA statement. The COA 
sketch (like the one for COA421 shown in Figure 1) is a 
graphical representation of the terrain, locations, 
compositions and missions of the friendly and enemy 
units. The COA statement explains what the units in a 
course of action will do to accomplish the assigned 
mission. This is expressed in a restricted but expressive 
subset of English, such as “BLUE-TASK-FORCE1, a 
balanced task force, attacks to seize OBJ-PASS, in order to 
enable the completion of seize OBJ-SLAM by BLUE-ARMOR-
BRIGADE1”. 

In the HPKB program, the COA challenge problem was 
solved by building an integrated system composed of 
several critiquers, each built by a different team, to solve 
a part of the overall problem. The participating teams 
were Teknowledge-Cycorp-AIAI, ISI/Expect, ISI/Loom, 
U.Mass, and GMU Disciple. All the teams had to share an 
input ontology and to use the same internal representation 
of the input generated automatically by Teknowledge and 
AIAI from COA descriptions provided by Alphatech. 

We have developed a COA critiquer, called Disciple-COA, 
that identifies the strengths and the weaknesses of a 
course of action with respect to the principles of war and 
the tenets of army operations. There are nine principles of 
war: objective, offensive, mass, economy of force, 
maneuver, unity of command, security, surprise, and 
simplicity. They provide general guidance for the conduct 

“There is a weakness in COA421 with respect to the Principle of 
Security because there are no actions taken to destroy RED-CSOP1 
which is an enemy unit assigned to collect intelligence and protect 
against surprise. The COA fails to call for aggressive security/counter-
reconnaissance actions, destroying enemy intelligence collection units 
and activities.” 

Figure 2: A solution generated by Disciple-COA. 
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of war at the strategic, operational and tactical levels. The 
tenets of army operations describe the characteristics of 
successful operations. They are: initiative, agility, depth, 
synchronization and versatility. Figure 2, for instance, 
shows a weakness identified by Disciple-COA in COA421. 

3.  The Current Version of Disciple 

The architecture of the current version of Disciple, called 
Disciple-COA, is represented in Figure 3. At a general 
level, it is organized into three main components: 

• = the intelligent user interface component that allows 
the experts to communicate with Disciple in a 
manner as close as possible to the way they 
communicate in their environment, 

• = the multistrategy learning and problem solving 
component which is responsible for knowledge 
formation and problem solving, and contains specific 
modules for rule learning and refinement, as well as 
cooperative and autonomous problem solving, 

• = the knowledge management component that contains 
modules for knowledge base management, import of 
ontologies, and knowledge translation between CYC 
and Disciple. 

The process of building the Disciple-COA critiquer 
included two main phases, the development of the domain 
ontology and the teaching of the agent how to critique 
COAs. 

One significant challenge was that each critiquer had to 
use the same domain ontology that was built by the 
Teknowledge-Cycorp team for their critiquer developed 
with the CYC system (Lenat, 1995). Consequently, the 
ontology of Disciple-COA was created by importing the 
ontology from CYC and by further extending it with other 
necessary elements. Disciple’s ontology includes 
hierarchies of objects, features and tasks, represented as 
frames, according to the OKBC knowledge model 

(Chaudhri et al. 1998). A fragment of the object ontology 
is presented in Figure 4. It shows a part of its upper level 
and a detail from its lower level. The ontology defines the 
main concepts from the COA domain, such as 
organizations, equipment, military tasks, purposes, and 
geographical concepts. A significant role of the object 
ontology in Disciple is that of being the generalization 
hierarchy for learning.  

The teaching of Disciple to critique COAs is done by 
using the cooperative problem solver. The problem 
solving framework is task reduction, where a task to be 
accomplished by the agent is successively reduced to 
simpler tasks until the initial task is reduced to a set of 
elementary tasks that can be immediately performed. The 
middle part of Figure 5 shows a sequence of task 
reduction steps, created jointly by the domain expert and 
Disciple-COA, for assessing to what extend COA421 
conforms to the Principle of Security. In order to perform 
this assessment, the expert and Disciple need a certain 
amount of information about COA421 which is obtained by 
asking a series of questions. These questions and the 
corresponding answers guide the reduction of assessment 
tasks into more informed ones, and ultimately into final 
assessments. For instance, the second question asks 
whether there is any enemy reconnaissance unit present in 
COA421. The answer identifies RED-CSOP1 as being such a 
unit because it is performing the task SCREEN1. Therefore, 
the task of assessing security of COA421 with respect to 
countering enemy reconnaissance is now reduced to the 
better defined task of assessing security when enemy 
reconnaissance is present. The next question to ask is 
whether the enemy reconnaissance unit is destroyed or 
not. In the case of COA421, RED-CSOP1 is not destroyed. 
Therefore one can conclude that there is a weakness in 
security because enemy reconnaissance is not countered. 
As can be seen in Figure 5, tasks are represented by a 
name and a sequence of feature-value pairs. In addition, 
the expert may provide their description in natural 
language. This natural language description (which is not 

Figure 3: The architecture of Disciple-COA. 

Instances
Solving
Rules

Multistrategy Learning
and Problem Solving

Intelligent User 
Interface

Autonomous 
Problem
Solver

Rule
Composer

Knowledge Base Management

Ontology
Import

Theory
Explanation

Ontology

Instances
Solving
Problem

Rules

Cooperative 
Problem 
Solver

Natural
Language

Generation

Ontology
Editors and
Browsers

Rule
Learner

Rule
Refiner

Figure 4: Fragment of the Disciple-COA ontology. 

ACTION

<OBJECT>

ORGANIZATION

MILITARY-TASK

EQUIPMENTGEOGRAPHICAL-
REGION PLAN

OBJECT-ACTED-ON

IS-TASK-OF-OPERATION

PENETRATE1

INSTANCE-OF

PENETRATE--
MILITARY-TASK

ATTACK2

RED-MECH-COMPANY4

INDICATES-MISSION-TYPE

IS-OFFENSIVE-ACTION-FOR
"military offensive operation"

"military offensive operation"

FORCE-RATIO 10.6

RECOMMENDED-FORCE-RATIO 3
HAS-SURPRISE-FORCE-RATIO 6

SUBCLASS-OF

MILITARY-MANEUVER

COMPLEX-
MILITARY-TASK

MILITARY-ATTACK

MILITARY-EVENT



 

 4

shown in Figure 5 because of the lack of space) is 
generalized into a natural language pattern, allowing 
Disciple-COA to generate solutions in natural language, 
like the one from Figure 2. 

The task reduction steps, such as the ones from the middle 
of Figure 5, are generated through a cooperative problem 
solving process, where some steps are contributed by 
Disciple-COA, and some are contributed by the domain 
expert. Through this process the expert will teach the 
agent in a natural manner, similar to how the expert 
would teach a human apprentice. The goal of the agent is 
to learn from the expert and from its problem solving 
attempts, developing a knowledge base that would allow 
it to exhibit the same problem solving performance as the 
human expert. We call the set of all correct solutions 
generated with this "final" knowledge base the Target 
Solution Space (see Figure 6). However, part of the 
Target Solution Space is not even included in the Current 
Representation Space of the agent which will have to be 
extended by introducing new terms in the ontology. The 
agent-expert interactions are guided by the cooperative 
problem solver of Disciple-COA that can distinguish 
between four types of problem solving situations: routine, 
innovative, inventive and creative (see Figure 6). Initially, 
when Disciple has few problem solving rules, most 
problem solving situations are creative because no rules 
are applicable and the task reductions need to be provided 
by the expert. From each such creative task reduction step 

Disciple will learn a new task reduction rule. For instance, 
from the last task reduction step in Figure 5 (consisting of 
a task, a question, an answer and a subtask), Disciple-COA 
learned the rule shown in the right hand side of Figure 5. 
In essence, a rule is a complex IF-THEN structure that 
specifies one or several conditions under which the task 
from the IF part can be reduced to the task(s) from the 
THEN part. Each rule includes a main condition that has 
to be satisfied in order for the rule to be applicable. In 
addition, it may include several except-when conditions 
(that should not hold in order for the rule to be 
applicable), "except-for" conditions (that specify 
instances that are negative exceptions of the rule) and 
"for" conditions (that specify positive exceptions). 
Partially learned rules, such as the ones showed in Figure 
5, do not contain exact conditions, but plausible version 
spaces for these conditions. Each such plausible version 
space is represented by a plausible upper bound condition 
which, as an approximation, is more general than the 
exact (but not yet known) condition, and a plausible lower 
bound condition which, as an approximation, is less 
general than the exact condition. The rule from the right 
hand side of Figure 5 contains a plausible version space 
for the main condition and a plausible version space for 
an except-when condition. These version spaces are 
generated automatically by Disciple-COA from the 
creative reduction and its explanations, as discussed 
below. The generalizations of these explanations are also 

Rule: R$ASWCER-001 Assess COA wrt Principle of Security
for coa     COA421

Does the COA include security and 
counter-recon actions, a security element, 

a rear element, and identify risks?

Plausible Upper Bound
?O1  IS  COA-SPECIFICATION-MICROTHEORY
?O2  IS  MODERN-MILITARY-UNIT--DEPLOYABLE

SOVEREIGN-ALLEGIANCE-OF-ORG ?O4 
TASK ?O3

?O3  IS  INTELLIGENCE-COLLECTION--MIL-TASK
?O4  IS  RED--SIDE

I consider enemy  reconnaissance

Assess security wrt countering enemy 
reconnaissance

for coa     COA421

Is an enemy reconnaissance unit present?

Yes, the enemy unit RED-CSOP1 is 
performing the action SCREEN1 which 

Is a reconnaissance action.

Assess security when enemy recon is 
present

for coa               COA421
for unit               RED-CSOP1
for recon action SCREEN1

Is the enemy unit destroyed?

No, RED-CSOP1 is not countered

Report weakness in security because 
enemy recon is not countered

for coa               COA421
for unit               RED-CSOP1
for recon action SCREEN1
with importance “high”

IF the task to accomplish is:
Assess-security-wrt-countering-enemy-
reconnaissance

for-coa  ?O1
Question: Is an enemy reconnaissance 
unit present?
Answer: Yes, the enemy unit ?O2 is 
performing the action ?O3 which is a 
reconnaissance action.

Explanation:
•?O2 SOVEREIGN-ALLEGIANCE-OF-ORG ?O4 IS RED--SIDE
•?O2 TASK ?O3 IS  INTELLIGENCE-COLLECTION--MIL-TASK

THEN accomplish the task:
Assess-security-when-enemy-recon-is-present

for-coa               ?O1
for-unit               ?O2
for-recon-action ?O3

Plausible Lower Bound
?O1  IS  COA-SPECIFICATION-MICROTHEORY
?O2  IS  MECHANIZED-INFANTRY-UNIT--MIL-SPECIALTY

SOVEREIGN-ALLEGIANCE-OF-ORG ?O4 
TASK ?O3

?O3  IS  SCREEN--MILITARY TASK
?O4  IS  RED--SIDE

Rule: R$ASWERIP-002

Plausible Upper Bound
?O1  IS  COA-SPECIFICATION-MICROTHEORY
?O2  IS  MODERN-MILITARY-UNIT--DEPLOYABLE
?O3  IS  INTELLIGENCE-COLLECTION--MILITARY-TASK
?S1  IS  “HIGH”

Explanation:
•?S1 IS ALWAYS “HIGH”

IF the task to accomplish is:
Assess-security-when-enemy-recon-is-
present

for-coa               ?O1
for-unit               ?O2
for-recon-action ?O3

Question: Is the enemy unit destroyed?
Answer: No, ?O2 is not countered

Plausible Lower Bound
?O1  IS  COA-SPECIFICATION-MICROTHEORY
?O2  IS  MODERN-MILITARY-UNIT--DEPLOYABLE
?O3  IS  INTELLIGENCE-COLLECTION--MILITARY-TASK
?S1  IS  “HIGH”

THEN accomplish the task:
Report-weakness-in-security-because-
enemy-recon-is-not-countered

for-coa              ?O1
for-unit              ?O2
for-recon-action ?O3
with-importance ?S1

Failure Explanation:
•?O4 OBJECT-ACTED-ON ?O2 
•?O4 IS DESTROY-MILITARY-TASK

Plausible Upper Bound
?O4 IS DESTROY-MILITARY-TASK

OBJECT-ACTED-ON ?O2 
Plausible Lower Bound
?O4 IS DESTROY-MILITARY-TASK

OBJECT-ACTED-ON ?O2 
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Figure 5: Illustration of cooperative problem solving and learning. 
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included in the learned rule. In addition, the rule also 
contains the generalizations of the natural language 
phrases representing the Question and its Answer from 
the creative reduction. The Questions and the Answers 
play multiple roles in Disciple-COA. They help the expert 
in formalizing the problem solving process as task 
reduction. They are used by the natural language 
generation module of Disciple to generate the question 
and answer part of a task reduction step obtained by 
instantiating a rule. The elements recognized by Disciple 
in these natural language phrases (such as “RED-CSOP1”) 
represent hints for the explanation generation process 
discussed below.  

To learn a rule from a creative reduction, the agent will 
first try to find an explanation of why the reduction is 
correct. An explanation is a path of objects and features in 
the object ontology, and identifies the important 
characteristics of the objects from the creative reduction 
that should be kept in any correct generalization of the 
reduction. This significantly limits the number of 
candidates for the rule to be learned from the current 
creative reduction. All these candidate rules are 
represented by Disciple-COA as a plausible version space 
IF-THEN task reduction rule (Tecuci, 1998).  

Finding the explanation for an example is also a 
cooperative process, where the agent proposes 
explanations ordered by their plausibility and the expert 
selects the correct ones. To generate the explanations, the 
agent uses an ordered set of heuristics for analogical 
reasoning. The heuristics are based on the hierarchies of 
tasks and features from Disciple’s ontology, and on 
different types of structure similarity between the current 
example and the existing rules. In essence, Disciple 
identifies the rules that include tasks similar to the current 
example. Then it uses the explanations from which these 
rules have been learned as a guide to search for 
explanations of the current example. The expert may also 
help the agent in finding the explanations by proving 
hints. Guidance is also provided by the question and the 
answer from the example that identify the objects that 
should be part of the explanation, even though Disciple-
COA does not have the ability to understand these natural 
language phrases. 

As Disciple-COA learns plausible version space rules, it 
can use them to propose routine, innovative or inventive 
solutions to the current problems. The routine solutions 
are those that satisfy the plausible lower bound conditions 
of the task reduction rules and are very likely to be 
correct. Those that are not correct are kept as exceptions 
to the rule. The innovative solutions are those that satisfy 
the plausible upper bound conditions. These solutions 
may or may not be correct, but in each case will lead to a 
refinement of the task reduction rules that generated them. 
For instance, the second task reduction step in Figure 5 is 
an innovative solution that has been accepted by the 
expert and has led to the generalization of the plausible 
lower bound condition of the rule shown in the left hand 

side of Figure 5. The inventive solutions are based on 
weaker forms of plausible reasoning (such as partial 
matching of the plausible conditions of the rules, and 
tasks similarity based on the structure of the ontology). 
An inventive task reduction step is based on several rules, 
and is generally a novel reduction of the tasks from these 
rules. From inventive solutions the agent will learn new 
plausible task reduction rules, as with the creative 
solutions, except that in such cases Disciple has more 
knowledge to guide the learning process.  

Our research on plausible version spaces has its origins in 
Mitchell's influential work on version spaces and his 
candidate elimination algorithm (Mitchell, 1997), 
extending them along several dimensions, and leading to 
a powerful and practical mixed-initiative multistrategy 
learning approach that synergistically integrates a wide 
range of knowledge acquisition and machine learning 
strategies, including apprenticeship learning, empirical 
inductive learning from examples and explanations, and 
analogical learning. This approach is based on a powerful 
knowledge representation language that includes the 
frame-based OKBC knowledge model for the 
representation of the ontological knowledge, and complex 
task reduction rules with multiple conditions. Moreover, 
we do not make the assumption that the representation 
space for learning needs to be completely defined before 
learning can take place. On the contrary, the 
representation language is assumed incomplete and 
partially incorrect, and is itself evolving during rule 
learning through the improvement of the ontology. 
Because the learning process takes place in an evolving 
representation language, the various plausible bounds of a 
rule are subject to heuristic transformations that involve 
both generalization and specialization operations for each 
bound. These transformations are guided by hints, 
explanations and analogies. Therefore, the learning 
process is very efficient and does not suffer from any 
combinatorial explosion. Also, learning may take place 
even in the presence of exceptions, when there is no rule 
that discriminates between all the positive examples and 
all the negative examples. 

Final
Representation
Space

Current
Representation
Space

Target
Solution

Space

Correct routine 
solutions Incorrect

routine 
solutions

Incorrect
innovative 
solutions

Correct innovative
solutions

Correct inventive
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Incorrect
inventive
solutions

Correct creative
solutions

Figure 6: Types of generated solutions. 
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4.  Evaluation of Disciple-COA 

With respect to the Disciple approach and its current 
implementation in Disciple-COA, we formulate the 
following claims that have been tested during the 
intensive evaluations of the HPKB program: 
• they significantly speed up the process of building and 

updating a high performance knowledge base; 
• they enable rapid learning of problem solving 

knowledge from domain experts, with limited 
assistance from knowledge engineers; 

• the learned problem solving knowledge is of a good 
enough quality to assure a high degree of correctness of 
the solutions generated by the agent; 

• the acquired problem solving knowledge assures a high 
performance of the problem solver. 

The main DARPA evaluation took place during the period 
July 6-16, 1999, and was organized in five evaluation 
items of increasing difficulty. Each item consisted of 
several COAs and assessment questions to be answered. 
Item1 consisted of COAs and questions that were 
previously provided by DARPA to guide the development 
of the COA critiquing agents. Item2 included new test 
questions about the same COAs. Items 3, 4, and 5 
consisted of previously unseen COAs that were 
increasingly more complex and required further 
development of the COA agents in order to properly 
answer the assessment questions. Each of the Items 3, 4 
and 5 consisted of two phases, a testing phase, and a 
repair phase. In the testing phase each team had to 
provide initial system responses. Then the evaluator 
issued the model answers and each team had a limited 
amount of time to repair its system and to perform further 
knowledge acquisition, to generate revised system 
responses.  

In addition to GMU, three other research groups 
developed COA critiquers as part of the HPKB program. 
Teknowledge and Cycorp developed a critiquer based on 
the CYC system (Lenat, 1995), taking advantage of 
CYC’s large knowledge repository and inferential 
capabilities. The Expect group from ISI based its critiquer 
on the Expect shell for problem solving and knowledge 
acquisition (Kim and Gil, 1999). Finally, the LOOM 
group from ISI developed a case-based critiquer as an 
extension to the Loom system (MacGregor, 1999). The 
responses of each system were scored by a team of 
domain experts along the following dimensions and 
associated weights: Correctness-50% (matches model 
answer or is otherwise judged to be correct), Justification-
30% (scored on presence, soundness, and level of detail), 
Lay Intelligibility-10% (degree to which a lay observer 
can understand the answer and the justification), Sources-
10% (degree to which appropriate sources are noted), and 
Proactivity-10% extra credit (appropriate corrective 
actions or other information suggested to address the 
critique). Based on these scores, several classes of metrics 

have been computed, including Recall and Precision. 
Recall is obtained by dividing the score for all answers 
provided by a critiquer by the total number of model 
answers provided by the evaluator. “Precision” is 
obtained by dividing the same score by the total number 
of correct answers (both the model answers provided by 
the evaluator and the new answers provided by the 
critiquer). The results obtained by the four evaluated 
critiquers are presented in Table 1. 

Figure 7 presents the breakdown by criteria of the Recall 
and Precision metrics, showing that Disciple-COA not 
only obtained the best overall results, but was also the 
only system to obtain high scores at each of these criteria. 

Figure 8 compares the number of model answers provided 
by the evaluators (the 1st bar corresponds to evaluation 
items 3 and 4, and the 3rd bar corresponds to the 
evaluation Item 5), with the number of correct answers 
generated by Disciple-COA (the 2nd and the 4th bar). The 
bottom part of the 2nd and the 4th bar show the number of 
model answers matched by Disciple-COA, and the upper 
part shows the additional correct answers generated by 
Disciple-COA. The large proportion of these new answers 
demonstrates that a very knowledgeable expert can train 
Disciple to exhibit much of his or her expertise. 

Table 1. Evaluation of the critiquers’ performance 
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70.20%114.69%63.71%56.81%Recall
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A very significant aspect is that all these results were 
obtained with an agent that was taught very rapidly. 
Figure 9 shows the evolution of the knowledge base of the 
Disciple-COA critiquer during the evaluation phase. 
Overall, the KB increased by 46% in 8 days, from a size 
of 6229 simple axioms equivalent to a size of 9092 simple 
axioms equivalent. The final knowledge base contained 
801 concepts, 444 object and task features, 360 tasks and 
342 PVS rules. Also, each COA was represented with 
around 1500 facts. 

5.  Direct Knowledge Acquisition from Experts 

In August 1999 we conducted a one week knowledge 
acquisition (KA) experiment with Disciple-COA at the US 
Army Battle Command Battle Lab in Fort Leavenworth, 
Kansas, to test the claim that domain experts that do not 
have prior knowledge engineering experience can teach 
Disciple-COA. The experiment involved four such military 
experts and had three phases: a joint training phase (day 1 
to 3), an individual KA experiment (day 4), and a joint 
discussion of the experiment (day 5). The entire 
experiment was video-taped. The training for the 
experiment included a detailed presentation of Disciple's 
knowledge representation, problem solving and learning 
methods and tools. For the knowledge acquisition 
experiment itself, each expert received a copy of Disciple-
COA with a partial knowledge base. This KB was obtained 

by removing the tasks and the rules from the complete KB 
of Disciple-COA. That is, the KB contained the complete 
ontology of objects, object features, and task features. We 
also provided the experts with the descriptions of three 
COAs, COA411, COA421, and COA51, to be used for training 
Disciple. These were the COAs used in the final phases of 
the DARPA’s evaluation of all the critiquers. Finally, we 
provided and discussed with the experts the modeling of 
critiquing these COAs with respect to the principles of 
offensive and security. That is, we provided the experts 
with specific task reductions like the one from the middle 
of Figure 5, to guide the teaching of Disciple by the 
experts. After that, each expert taught Disciple-COA 
independently, while being supervised by a knowledge 
engineer who’s role was to help the expert if he reached 
an impasse while using Disciple.  

Figure 10 shows the evolution of the KB during the 
teaching process for one of the experts, being 
representative for all the four experts. In the morning the 
expert taught Disciple to critique COAs with respect to 
the Principle of Offensive and in the afternoon he taught it 
to critique COAs with respect to the Principle of Security. 
In both cases the expert used first COA411, then COA422 
and then COA51. As one can see from Figure 10, Disciple 
initially learned more rules, and then the emphasis shifted 
to rule refinement. Therefore, the increase in the KB size 
is greater toward the beginning of the training process for 
each principle. On average, the teaching for the Principle 
of Offensive took 101minutes. During this time Disciple 
learned 14 tasks and 14 rules (147 simple axioms 
equivalent). The teaching for security took place in the 
afternoon and consisted of 72 minutes of expert-Disciple 
interactions. During this time Disciple learned 14 tasks 
and 12 rules (136 simple axioms equivalent). There was 
no or very limited assistance from the knowledge 
engineer with respect to teaching. The knowledge 
acquisition rate obtained during the experiment was very 
high (~ 9 tasks and 8 rules / hour expert, or 98 simple 
axioms equivalent/hour). At the end of this training 
process, Disciple-COA was able to correctly identify 17 
strengths and weakness of the 3 COAs with respect to the 
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Figure 9: The evolution of the KB during evaluation. 
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principles of offensive and security. 

After the experiment, each expert was asked to fill in a 
detailed questionnaire designed to collect subjective data 
for usability evaluation.  The questionnaire was organized 
into three major sections: a) 6 overall questions, b) 40 
detail questions, and c) comments and recommendation. 
The questions addressed three main dimensions of 
evaluation: effect on task performance, system usability, 
and system fit. In addition, each such dimension 
considered various criteria (e.g. system fit with the user or 
system fit with the organization), and even sub-criteria. 
All the answers took into account that Disciple-COA was a 
research prototype and not a commercial product, and 
were rated based on a scale of 1 to 5, with 1 denoting not 
at all and 5 denoting very. For illustration, Table 2 shows 
three questions and the answers provided by the four 
experts. An analysis of all the answers revealed again 
very high scores for the Disciple approach (82.39% on the 
fitness of the Disciple critiquing agent to their 
organizations, 76.32% in the effect that Disciple-COA 
would have on their task performance, and 73.72% in 
system’s usability).  

6.  Conclusion 

The evaluation results demonstrate that the Disciple 
approach has reached a high level of maturity, being 
usable for teaching agents to solve complex real world 
problems. Figure 5 suggests the usefulness of this 
approach for knowledge acquisition. In the traditional, 
knowledge engineering approach to agent development, a 
knowledge engineer would need to manually define and 
debug rules like the ones in Figure 5. With Disciple, the 
domain expert (possibly assisted by a knowledge 
engineer) needs only to define specific reductions like 
those in the middle of Figure 5, because Disciple will 
learn and refine the corresponding rules. The current 
results provide a very encouraging support to the vision 
that, through further development of the Disciple 
approach, it will be some day possible for a normal user 
that has very limited knowledge engineering experience, 

to develop his or her personal assistant, as easily as such a 
person uses an email program, a word processor, or an 
internet browser today. 
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Table 2. Sample questions answered by the experts. 

Do you think that Disciple 
is a useful tool for 
Knowledge Acquisition?

Do you think that Disciple 
is a useful tool for Problem 
Solving?

Were the procedures/ 
processes used in Disciple 
compatible with Army 
doctrine and/or decision 
making processes? 

Questions Answers
• Rating 5.  Absolutely!  The potential use of this tool by 
domain experts is only limited by there imagination - not 
their AI programming skills.
• 5
• 4
• Yes, it allowed me to be consistent with logical thought.

• Rating 5.  As a minimum yes, as a maximum—better!
• This again was done very well.
• 4
• 4

• Rating 5. Yes.
• 5 (absolutely)
• 4
• Yes. As it develops and becomes tailored to the user, 
it will simplify the tedious tasks.


