

Rapid Development of a High Performance Knowledge Base
for Course of Action Critiquing

Gheorghe Tecuci (tel: 703 993-1722, email: tecuci@gmu.edu, fax: 703 993-1710)

Mihai Boicu (tel: 703 993-4669, email: mboicu@cs.gmu.edu)
Dorin Marcu (tel: 703 993-4669, email: dmarcu@cs.gmu.edu)

Michael Bowman (tel: 703 704-0529, email: mbowman3@osf1.gmu.edu)
Florin Ciucu (tel: 703 993-1535, email: fciucu@cs.gmu.edu)

Cristian Levcovici (tel: 703 993-1535, email: clevcovi@cs.gmu.edu)

Learning Agents Laboratory, Department of Computer Science, MS 4A5
George Mason University, 4400 University Drive, Fairfax, VA 22030-4444

http://lalab.gmu.edu

Application domain: Critiquing of Military Courses Of Action

AI technique employed and issue addressed:
• Knowledge Acquisition Bottleneck
• Development and implementation of a learning-based methodology and agent shell, called

Disciple-COA, for direct knowledge acquisition from domain experts with limited assistance
from knowledge engineers.

Tools used
• LISP and JAVA were used to develop the Disciple-COA shell
• Disciple-COA was used to develop the knowledge base for COA critiquing

Application Status
Disciple-COA and its KB for COA critiquing are research prototypes that have been evaluated in
several studies as part of DARPA's High Performance Knowledge Bases program.

Abstract

This paper presents a practical learning-based methodology and agent shell for building
knowledge bases and knowledge-based agents, and their innovative application to the
development of a critiquing agent for military courses of action, a challenge problem set by
DARPA’s High Performance Knowledge Bases program. The agent shell consists of an
integrated set of knowledge acquisition, learning and problem solving modules for a generic
knowledge base structured into two main components: an ontology that defines the concepts
from a specific application domain, and a set of task reduction rules expressed with these
concepts. The rapid development of the COA critiquing agent was done by importing an initial
ontology from CYC and by teaching the agent to perform its tasks in a way that resembles how
an expert would teach a human apprentice when solving problems in cooperation. The
methodology, the agent shell, and the developed critiquer were evaluated in several intensive
studies, and demonstrated very good results.

 2

1 Introduction

The purpose of this paper is twofold: 1) to present a maturing learning-based methodology and
tool for developing knowledge-based agents, and 2) to present an innovative application of this
methodology and tool.

This work was performed as part of the High Performance Knowledge Bases (HPKB) program
which ran from 1997 to 1999, with support from DARPA and AFOSR (Cohen et al. 1998). The
goal of HPKB was to produce the technology needed to rapidly construct large knowledge-bases
(with many thousands of axioms) that provide comprehensive coverage of topics of interest, are
reusable by multiple applications with diverse problem-solving strategies, and are maintainable
in rapidly changing environments. The organizations participating in HPKB were given the
challenge of solving a selection of knowledge-based problems in a particular domain, and then
modifying their systems quickly to solve further problems in the same domain. The aim of the
exercise was to test the claim that, with the latest AI technology, large knowledge bases can be
built quickly and efficiently.

The George Mason University Learning Agents Lab’s approach to HPKB is based on the
Disciple apprenticeship multistrategy learning theory, methodology and shell for rapid
development of knowledge bases and knowledge-based agents (Tecuci 1998). Stimulated by the
HPKB challenge problems, Disciple has been significantly scaled-up. The challenge problem for
the first year of HPKB was to build a knowledge-based workaround agent that is able to plan
how a convoy of military vehicles can “work around” (i.e. circumvent or overcome) obstacles in
their path, such as damaged bridges or minefields (Tecuci et al. 1999). The challenge problem
for the second year of HPKB was to build a critiquing agent that can evaluate military Courses of
Action (COA) that were developed as hasty candidate plans for ground combat operations. The
developed Disciple agents and the Disciple shell were evaluated during intense DARPA annual
evaluation periods, together with the other tools and systems developed in the HPKB program by
the other participating teams. In both cases the Disciple agents were developed very rapidly and
demonstrated performance superior to the other developed systems.

In this paper we will present the successful application of the Disciple approach to the COA
challenge problem. We will first describe this challenge problem which in itself represents an
innovative application of Artificial Intelligence. Then we will present the Disciple tool and
methodology used to build the COA critiquing agent. After that we will present the results of the
DARPA's evaluation of the developed tools and COA critiquers. We will also briefly present the
results of a separate knowledge acquisition experiment with Disciple. We will conclude the
paper with a discussion of these results and the future direction of our work.

2 The Course Of Action Challenge Problem

A military COA is a preliminary outline of a plan for how a military unit might attempt to
accomplish a mission. A COA is not a complete plan in that it leaves out many details of the
operation such as exact initial locations of friendly and enemy forces. After receiving orders to
plan for a mission, a commander and staff complete a detailed and practiced process of analyzing
the mission, conceiving and evaluating potential COAs, selection of a COA, and the preparation
of detailed plans to accomplish the mission based on the selected COA. The general practice is
for the staff to generate several COAs for a mission, and then to make a comparison of those
COAs based on many factors including the situation, the commander’s guidance, the principles

 3

of war, and the tenets of army operations. The commander makes the final decision on which
COA will be used to generate his or her plan based on the recommendations of the staff and his
or her own experience with the same factors considered by the staff (Alphatech, 1999).

The COA challenge problem consists of rapidly developing a knowledge-based critiquing agent
that can automatically critique COAs for ground force operations, can systematically assess
selected aspects of a COA, and can suggest repairs to it. The role of this agent is to act as an
assistant to the military commander, helping the commander to choose between several COAs
under consideration for a certain mission.

The input to the COA critiquing agent consists of the description of a COA that includes the
following aspects:

a) The COA sketch, such as the one in the top part of Figure 1, is a graphical depiction of the
preliminary plan being considered. It includes enough of the high level structure and
maneuver aspects of the plan to show how the actions of each unit fit together to accomplish
the overall purpose, while omitting much of the execution detail that will be included in the
eventual operational plan. The three primary elements included in a COA sketch are: control
measures which limit and control interactions between units; unit graphics that depict known,
initial locations and make up of friendly and enemy units; and mission graphics that depict

Mission: BLUE-BRIGADE2 attacks to penetrate RED-MECH-REGIMENT2 at 130600 Aug in order to enable the completion of seize

OBJ-SLAM by BLUE-ARMOR-BRIGADE1.

Close: BLUE-TASK-FORCE1, a balanced task force (MAIN-EFFORT) attacks to penetrate RED-MECH-COMPANY4, then clears
RED-TANK-COMPANY2 in order to enable the completion of seize OBJ-SLAM by BLUE-ARMOR-BRIGADE1.

 BLUE-TASK-FORCE2, a balanced task force (SUPPORTING-EFFORT1) attacks to fix RED-MECH-COMPANY1 and
RED-MECH-COMPANY2 and RED-MECH-COMPANY3 in order to prevent RED-MECH-COMPANY1 and RED-MECH-
COMPANY2 and RED-MECH-COMPANY3 from interfering with conducts of the MAIN-EFFORT1, then clears RED-
MECH-COMPANY1 and RED-MECH-COMPANY2 and RED-MECH-COMPANY3 and RED-TANK-COMPANY1.|

…

Figure 1: A sample of a COA sketch and a fragment of a COA statement.

 4

actions and tasks assigned to friendly units. The COA sketch is drawn using a palette-based
sketching utility.

b) The COA statement, such as the partial one shown in the bottom part of Figure 1, clearly
explains what the units in a course of action will do to accomplish the assigned mission. The
text of a COA statement includes a description of the mission and the desired end state, as
well as standard elements that describe purposes, operations, tasks, forms of maneuver, units,
and resources to be used in the COA. The COA statement is expressed in a restricted but
expressive subset of English.

c) Selected products of mission analysis, such as the areas of operations of the units, avenues of
approach, key terrain, unit combat power, and enemy COAs.

Based on this input, the critiquing agent has to assess various aspects of the COA, such as its
viability (suitability, feasibility, acceptability and completeness), its correctness (array of forces,
scheme of maneuver, command and control), and its strengths and weaknesses with respect to
the Principles of War and the Tenets of Army Operations, to justify the assessments made and to
propose improvements to the COA.

In the HPKB program, the COA challenge problem was solved by developing an integrated
system composed of several critiquers, each built by a different team, to solve a part of the
overall problem. The participating teams were Teknowledge-Cycorp-AIAI, ISI/Expect,
ISI/Loom, U.Mass, Northwestern Univ. and GMU. All the teams shared an input ontology and
used the same internal representation of the input generated by Teknowledge and AIAI from
COA descriptions provided by Alphatech.

We developed a COA critiquer, called Disciple-COA, that identifies the strengths and the
weaknesses of a course of action with respect to the principles of war and the tenets of army
operations (FM-105, 1993). There are nine principles of war: objective, offensive, mass,

Reference: FM100-5 pg 2-4, KF113.1, KF113.2, KF113.3, KF113.4,
KF113.5 - To mass is to synchronize the effects of all elements of
combat power at the proper point and time to achieve decisive results.
Observance of the Principle of Mass may be evidenced by allocation to
the main effort of significantly greater combat power than the minimum
required throughout its mission, accounting for expected losses. Mass is
evidenced by the allocation of significantly more than minimum combat
power required at the decisive point.

There is a strength in COA411
with respect to mass because
BLUE-MECH-COMPANY8 is a
COMPANY-UNIT-DESIGNATION
level maneuver unit assigned to
be the reserve. This is
considered a strong reserve for
a BRIGADE--UNIT-DESIGNATION
level COA and would be
available to continue the
operation or exploit success.

There is a strength in COA411 with respect to mass because
BLUE-TASK-FORCE1 is the main effort of the COA and it has
been allocated 33% of available combat power but this is
considered just a medium level weighting of the main effort.

There is a major strength in COA411 with respect to mass because BLUE-TASK-FORCE1 is the
MAIN-EFFORT1 and it acts on the decisive point of the COA (RED-MECH-COMPANY4) with a force
ratio of 10.6, which exceeds a recommended force ratio of 3.0. Additionally, the main effort is
assisted by supporting action SUPPRESS-MILITARY-TASK1 which also acts on the decisive point.
This is good evidence of the allocation of significantly more than minimum combat power
required at the decisive point and is indicative of the proper application of the principle of mass.

Asses COA411 with respect to the Principle of Mass

Figure 2: Answers generated by Disciple-COA.

 5

economy of force, maneuver, unity of command, security, surprise, and simplicity. They provide
general guidance for the conduct of war at the strategic, operational and tactical levels. The
tenets of army operations describe the characteristics of successful operations. They are:
initiative, agility, depth, synchronization and versatility. Figure 2, for instance, shows some of
the strengths of the COA from Figure 1 with respect to the Principle of Mass, identified by
Disciple-COA.

In addition to generating answers in natural language, Disciple also provides the reference
material based on which the answers are generated, as shown in the bottom left of Figure 2. Also,
the Disciple-COA agent can provide justifications of the generated answers at three levels of
detail, from a very abstract one that shows the general line of reasoning followed, to a very
detailed one that indicates each of the knowledge pieces used in generating the answer.

In the next section we will present the general methodology used to build Disciple-COA and the
architecture of Disciple-COA.

3 General presentation of Disciple-COA

Disciple is the name of an evolving theory, methodology and shell for rapid development of
knowledge bases and knowledge-based agents, by subject matter experts, with limited assistance
from knowledge engineers (Tecuci, 1998). The current Disciple shell consists of an integrated set
of knowledge acquisition, learning and problem solving modules for a generic knowledge base
structured into two main components: an ontology that defines the concepts from a specific
application domain, and a set of problem solving rules expressed with these concepts. The
problem solving approach of an agent built with Disciple is task reduction, where a task to be
accomplished by the agent is successively reduced to simpler tasks until the initial task is
reduced to a set of elementary tasks that can be immediately performed. Therefore, the rules
from the KB are task reduction rules. The ontology consists of hierarchical descriptions of
objects, features and tasks, represented as frames, according to the knowledge model of the Open
Knowledge Base Connectivity (OKBC) protocol (Chaudhri et al. 1998).

The development of a specific Disciple agent includes the following processes: 1) the
customization of the problem solver and the interfaces of the Disciple shell for that particular
domain; 2) the building of the domain ontology by importing knowledge from external
repositories of knowledge and by manually defining the other components of the ontology, and
3) teaching the agent to perform its tasks,
teaching that resembles how an expert
would teach a human apprentice when
solving problems in cooperation. Following
this process we have developed Disciple-
COA which is presented in Figure 3.

For Disciple-COA, an initial ontology was
defined by importing the input ontology
built by Teknowledge and AIAI for the
COA challenge problem. The input
ontology contains the terms needed to
represent the COAs to be critiqued, and was
shared by all the developed critiquers. The

PROBLEM SOLVING
RULES

PROBLEM
MEDIATOR

ONTOLOGY
IMPORT

KB MANAGER

C
O

A
 F

R
O

M
F

U
S

IO
N

PROBLEM
INSTANCES

S
O

LU
TI

O
N

S
F

IL
E

ONTOLOGY

CYC

G
E

O
G

R
A

P
H

IC
K

N
O

W
LE

D
G

E

KIF
FILE

CyCL
FILE

CyCL
FILE

KB
LOAD

KB
SAVE

FEATURE
EDITOR

OBJECT
EDITOR

RULE
EDITOR

TASK
EDITOR

ASSOCIATION
BROWSER

HIERARCHY
BROWSER

S
O

L
U

T
IO

N

RULE
LEARNER

EXPLANATION
GENERATOR

HINT
EDITOR

RULE
REFINER

OUTPUT
GENERATOR

EXAMPLE
EDITOR

COOPERATIVE
COA

CRITIQUER

AUTONOMOUS
COA

CRITIQUER

Figure 3: The architecture of Disciple-COA.

 6

top level of this ontology is represented in Figure 4. It includes concepts for representing
geographical information, military organizations and equipment, descriptions of specific COAs,
military tasks, operations and purposes. As shown in the top left of Figure 3, this ontology was
first translated from CYC’s language into KIF (Genesereth and Fikes, 1992) and from there it
was translated into the representation language of Disciple and the other critiquers.

The imported ontology was further developed by using the ontology building tools of Disciple
shown in the top right side of Figure 3 (the object, feature, task and rule editors and browsers).

As presented in the previous
section, the COA to be critiqued is
represented as a sketch and a
textual description. A statement
translator (developed by AIAI and
Teknowledge), a COA sketcher
(developed by Teknowledge), and
a geographic reasoner (developed
by Northwestern Univ.) transform
and fuse these external
representations into a description
in the CYC language, according to the input ontology. This description is imported into
Disciple’s ontology by the problem mediator module of Disciple.

The next step in the development of the Disciple-COA critiquer was to teach Disciple to critique
COAs with respect to the principles of war and the tenets of army operations. The expert loads
the description of a specific COA, such as COA411 represented in Figure 1, and then invokes the
Cooperative Problem Solver with an initial task of critiquing the COA with respect to a certain
principle or tenet. Disciple uses its task reduction rules to reduce the current task to simpler
tasks, showing the expert the reductions found. The expert may accept a reduction proposed by
the agent, may reject it or may decide to define a new reduction. From each such interaction
Disciple will either learn a new task reduction rule or will refine a previously learned rule, as
explained in the following. After a new rule is learned or an existing rule is refined, the
Cooperative Problem Solver resumes the task reduction process until a solution of the initial
problem is found.

Initially Disciple does not contain any rules. Therefore all the problem solving steps (i.e. task
reductions) must be provided by the expert, as illustrated in Figure 5, and explained in the
following.

To assess COA411 with respect to the Principle of Security the expert (and Disciple) needs a
certain amount of information which is obtained by asking a series of questions (see Figure 5).
The answer to each question allows one to reduce the current assessment task to a more detailed
one. This process continues until the expert (and Disciple) has enough information about
COA411 to make the assessment. As shown in Figure 5, the initial task is reduced to that of
assessing the security of COA411 with respect to the countering of enemy reconnaissance. Then
one asks whether there is any enemy reconnaissance unit present in COA411. The answer
identifies RED-CSOP1 as being such a unit because it is performing the task SCREEN1.
Therefore, the task of assessing security for COA411 with respect to countering enemy
reconnaissance is now reduced to the better defined task of assessing security when enemy

ACTION

<OBJECT>

MILITARY-PURPOSE

MILITARY-EVENT

MODERN-MILITARY-ORGANIZATION

ORGANIZATION

MILITARY-OPERATION MILITARY-TASK

PURPOSE

MILITARY-EQUIPMENT

EQUIPMENT

GEOGRAPHICAL-REGION

COA-SPECIFICATION-MICROTHERY

PLAN

Figure 4: Top level of the ontology imported from CYC.

 7

reconnaissance is present. The next
question to ask is whether the enemy
reconnaissance unit is destroyed or
not. In the case of COA411, RED-
CSOP1 is destroyed by the task
DESTROY1. Therefore one can
conclude that there is a strength in
COA411 with respect to the Principle
of Security because the enemy
reconnaissance unit is countered.

To define a reduction of the current
task the expert uses the Example
Editor. This, in turn, may invoke the
Object Editor, the Feature Editor or
the Task Editor, if the specification of
the example involves new knowledge
elements that are not present in the
current ontology. Once the reduction
has been defined by the expert the
Rule Learner is invoked to learn a
general rule from each specific task
reduction. Figure 6 shows some details of the process of teaching Disciple.

The left hand side of Figure 6 represents the reasoning process of the expert, the question and the
answer being in free natural language format. To learn a rule from this example of task
reduction, Disciple needs to find an explanation of why the task from the top of Figure 6 is
reduced to the task from the bottom of Figure 6. The explanation to be found, expressed in
Disciple’s language, is shown in the right hand side of Figure 6. Formally, this explanation
consists of a set of paths in Disciple’s ontology, each path being a sequence of objects and
features.

The information from the explanation is included in the question and the answer from the left
hand side of Figure 6. However, the current version of Disciple does not have the ability to
understand natural language (although this is a topic of current research). The main role of the
question and the answer is to focus the reasoning process of the expert. Also, the domain expert
is not a knowledge engineer and therefore cannot be assumed to be able to provide Disciple with
the explanation. This would be very difficult for the expert for at least two reasons. First of all
there are many hundreds of objects and features names and the domain expert should not be
required to learn them. Secondly, the domain expert should not be required to use the formal
syntax of Disciple, to be able to correctly define formal explanations.

The current approach to explanation generation relies on the complementary abilities of the
domain expert and Disciple. The expert cannot formulate correct explanations, but he can
provide some hints to Disciple, for instance by pointing to an object that the explanation should
contain. Also, he can recognize a correct explanation piece proposed by Disciple. Disciple, on
the other hand, can generate syntactically correct explanation pieces. It can also use analogical
reasoning and the hints received from the expert to focus its search and to identify a limited
number of plausible explanations from which the expert will have to select the correct ones.

Rule
Learning

Rule
Learning

Rule
Learning Yes, RED-CSOP1 is destroyed by DESTROY1

Is the enemy reconnaissance unit destroyed?

Is an enemy reconnaissance unit present?

Does the COA include security and counter-recon actions,
a security element, a rear element, and identify risks?

Assess security wrt countering enemy reconnaissance
for-coa COA411

Assess security when enemy recon is present
for-coa COA411
for-unit RED-CSOP1
for-recon-action SCREEN1

 Yes, RED-CSOP1 which is performing
the reconnaissance action SCREEN1

Report strength in security because of countering enemy recon
for-coa COA411
for-unit RED-CSOP1
for-recon-action SCREEN1
for-action DESTROY1
with-importance HIGH

I consider enemy reconnaissance

Assess COA wrt Principle of Security
for-coa COA411

R
$A

C
W

P
O

S
-001

R
$A

S
W

C
E

R
-001

R
$A

S
W

E
R

IP
-001

Figure 5: Task reductions and the rules learned from them.

 8

The explanation generation strategy
is based on an ordered set of
heuristics for analogical reasoning.
They exploit the hierarchies of
objects, features and tasks to identify
the rules that are similar to the
current reduction, and to use their
explanations as a guide to search for
similar explanations for the current
example. This cooperative
explanation-generation process
proved to be very effective, as
demonstrated by the successful
knowledge acquisition experiment
described in section 4.

From the example reduction and its explanation in Figure 6, Disciple automatically generated the
plausible version space rule in Figure 7. This is an IF-THEN rule, the components of which are
generalizations of the elements of the example in Figure 6. In addition, the rule contains two
conditions for its applicability, a plausible lower bound condition and a plausible upper bound
condition. These conditions approximate an exact applicability condition that Disciple attempts
to learn. The plausible lower bound condition covers only the example in Figure 6, restricting the
variables from the rule to take only the values from this example. It also includes the relations
between these variables that have been identified as relevant in the explanation of the example.
The plausible upper bound condition is the most general generalization of the plausible lower
bound condition. It is obtained by taking into account the domains and the ranges of the features
from the plausible lower bound conditions and the tasks, in order to determine the possible
values of the variables. The domain of a feature is the set of objects that may have that feature.
The range is the set of possible values of that feature. For instance, ?O2 is the value of the task
feature “FOR-UNIT”, and has as features “SOVEREIGN-ALLEGENCE-OF-ORG” and “TASK”.
Therefore, any value of ?O2 has to be in the intersection of the range of “FOR-UNIT”, the domain
of “SOVEREIGN-ALLEGENCE-OF-ORG”, and the domain of “TASK”. This intersection is
“MODERN-MILITARY-UNIT-DEPLOYABLE”.

The learned PVS rules, such as the one in Figure 7, are used in problem solving to generate task
reductions with different degrees of plausibility, depending on which of its conditions are
satisfied. If the Plausible Lower Bound Condition is satisfied, then the reduction is very likely to
be correct. If the Plausible Lower Bound Condition is not satisfied, but the Plausible Upper
Bound Condition is satisfied, then the solution is considered only plausible. Any application of a
PVS rule however, either successful or not, provides an additional (positive or negative)
example, and possibly an additional explanation, that are used by the agent to further improve
the rule through the generalization and/or specializations of its conditions.

Let us consider again the task reductions from Figure 5. At least for the elementary tasks, such as
the one from the bottom of the figure, the expert needs also to express them in natural language:
“There is a strength with respect to surprise in COA411 because it contains aggressive security/counter -
reconnaissance plans, destroying enemy intelligence collection units and activities. Intelligence collection by
RED-CSOP1 will be disrupted by its destruction by DESTROY1”. Similarly, the expert would need to

Question:
Is an enemy reconnaissance unit present?

Learn
 the rule

R$ASWCER-001

IF the task to accomplish is:
ASSESS-SECURITY-WRT-COUNTERING-ENEMY-RECONNAISSANCE
 FOR-COA ?O1

Question: Is a enemy recon unit present in <| ?O1 |> ?
Answer: Yes, the enemy unit <| ?O2 |> is performing the action
 <| ?O3 |> which is a reconnaissance action.

Then accomplish the task:
 ASSESS-SECURITY-WHEN-ENEMY-RECON-IS-PRESENT
 FOR-COA ?O1
 FOR-UNIT ?O2
 FOR-RECON-ACTION ?O3

Plausible Upper Bound Condition:
?o1 is COA-SPECIFICATION-MICROTHEORY
?o2 is MODERN-MILITARY-UNIT--DEPLOYABLE
 SOVEREIGN-ALLEGIANCE-OF-ORG ?O4
 TASK ?O3
?O3 is INTELLIGENCE-COLLECTION--MILITARY-TASK
?O4 is RED--SIDE

Plausible Lower Bound Condition:
?o1 is COA-SPECIFICATION-MICROTHEORY
?o2 is MODERN-MILITARY-UNIT--DEPLOYABLE
 SOVEREIGN-ALLEGIANCE-OF-ORG ?O4
 TASK ?O3
?O3 is INTELLIGENCE-COLLECTION--MILITARY-TASK
?O4 is RED--SIDE

Justification:
 ?O2 SOVEREIGN-ALLEGIANCE-OF-ORG ?O4
 ?O2 TASK ?O3
 ?O4 IS ALWAYS RED--SIDE

Assess security wrt countering enemy reconnaissance
for-coa COA411

Assess security when enemy recon is present
for-coa COA411
for-unit RED-CSOP1
for-recon-action SCREEN1

Logic

Explanation:
RED-CSOP1 SOVEREIGN-ALLEGIANCE-OF-ORG RED--SIDE
RED-CSOP1 TASK SCREEN1
SCREEN1 IS INTELLIGENCE-COLLECTION--MILITARY-TASK

Answer:

 Yes, RED-CSOP1 which is performing
the reconnaissance action SCREEN1

Natural Language

Figure 6: Teaching Disciple to reduce a task.

 9

indicate the source material for the concluded
assessment. The learned rules will contain
generalizations of these phrases that are used
to generate answers in natural language, as
illustrated in Figure 2. Similarly, the
generalizations of the questions and answers
from the rules applied to generate a solution
are used to produce an abstract justification of
the reasoning process.

Comparing the left hand side of Figure 6
(which is defined by the domain expert) with
the rule from Figure 7 (which is learned by
Disciple) suggests the usefulness of Disciple
for knowledge acquisition. In the traditional
knowledge engineering approach, a
knowledge engineer would need to manually
define and debug a rule like the one in Figure
7. With Disciple, the domain expert (possibly
assisted by a knowledge engineer) needs only
to define an example reduction, because
Disciple will learn and refine the
corresponding rule. That this approach works
very well is demonstrated by the intense experimental studies conducted with Disciple and
reported in the next section.

4 Evaluation of the COA Critiquers and of the Knowledge Acquisition Tools

In addition to GMU, other three research groups have developed COA critiquers as part of the
HPKB program. Teknowledge and CYC have developed a critiquer based on the CYC system
(Lenat, 1995). The other two critiquers have been developed at ISI, one based on the Expect
system (Kim and Gil, 1999), and the other based on the Loom system (MacGregor, 1999). All
the critiquers were evaluated as part of HPKB’s annual evaluation. There was a one week dry
run evaluation (May 10-15, 1999) of all the COA critiquers that had as a main objective to debug
the evaluation mechanics. The actual evaluation took place during the period July 6-16, 1999,
and was organized as five evaluation items of increasing difficulty. Each item consisted of
descriptions of various COAs and a set of questions to be answered about each of them. Item1
consisted of COAs and questions that were previously provided by DARPA to guide the
development of the COA critiquing agents. Item2 included new test questions about the same
COAs. Items 3, 4, and 5 consisted of new COAs that were increasingly more complex and
required further development of the COA agents in order to properly answer the asked questions.
Each of the Items 3, 4 and 5 consisted of two phases.

In the first phase each team had to provide initial system responses. Then the evaluator issued the
model answers and each team had a limited amount of time to repair its system, perform further
knowledge acquisition, and to generate revised system responses.

R$ASWCER-001
IF the task to accomplish is:
ASSESS-SURPRISE-WRT-COUNTERING-ENEMY-RECONNAISSANCE
 FOR-COA ?O1

Question: Is an enemy recon unit present in ?O1 ?
Answer: Yes, the enemy unit ?O2 is performing the action
 ?O3 which is a reconnaissance action.

THEN accomplish the task:
 ASSESS-SURPRISE-WHEN-ENEMY-RECON-IS-PRESENT
 FOR-COA ?O1
 FOR-UNIT ?O2
 FOR-RECON-ACTION ?O3

Plausible Upper Bound Condition:
?O1 IS COA-SPECIFICATION-MICROTHEORY
?O2 IS MODERN-MILITARY-UNIT--DEPLOYABLE
 SOVEREIGN-ALLEGIANCE-OF-ORG ?O4
 TASK ?O3
?O3 IS INTELLIGENCE-COLLECTION--MILITARY-TASK
?O4 IS RED--SIDE

Plausible Lower Bound Condition:
?O1 IS COA411
?O2 IS RED-CSOP1
 SOVEREIGN-ALLEGIANCE-OF-ORG ?O4
 TASK ?O3
?O3 IS SCREEN1
?O4 IS RED--SIDE

Explanation:
?O2 SOVEREIGN-ALLEGIANCE-OF-ORG ?O4 IS RED--SIDE
?O2 TASK ?O3 IS INTELLIGENCE-COLLECTION--MILITARY-TASK

Figure 7: Plausible version space rule learned
from the example and explanation in Figure 6.

 10

The responses of each system were scored by a team of domain experts along the following
dimensions and associated weights: Correctness-50% (matches model answer or is otherwise
judged to be correct), Justification-30% (scored on presence, soundness, and level of detail), Lay
Intelligibility-10% (degree to which a lay observer can understand the answer and the
justification), Sources-10% (degree to which appropriate sources are noted), and Proactivity-10%
extra credit (appropriate corrective actions or other information suggested to address the
critique). Based on these scores several classes of metrics have been computed, including Recall
and Precision. Recall is obtained by dividing the score for all answers provided by a critiquer to
the total number of model answers for the asked questions. “Precision” is obtained by dividing
the same score by the total number of answers provided by that system (both the model answers
provided by the evaluator and the new answers provided by the critiquer). The results obtained
by the four evaluated critiquers are presented in Figure 8 and show that Disciple-COA has
obtained the best results out of the four developed critiquers.

Figure 9 compares the recall and the coverage of the developed critiquers for the last three most
complex items of the evaluations. For each evaluation item, the beginning of each arrow shows
the coverage and recall for the initial testing phase, and the end of the arrow shows the same data

Metric: Recall (Total Score)

Tek/Cyc ISI-Expect GMU ISI-Loom

56.81%
63.71%

114.69%

70.20%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Metric: Precision (Total Score)

Tek/Cyc ISI-Expect GMU ISI-Loom

62.61%

76.01%
81.99%

57.48%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

CorrectnessProactivityJustification Intelligibility Source Total

Tek/Cyc ISI-Expect GMU ISI-Loom

Recall Breakdown by Criteria

Correctness Justification Intelligibility Sources Proactivity Total
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Tek/Cyc ISI-Expect GMU ISI-Loom

Precision Breakdown by Criteria

Figure 8: Comparison of the performance of the developed COA critiquers.

 11

for the modification phase. In this case the systems
that are above and to the right are superior to the
other systems. This graph shows that all the systems
increased their coverage during the evaluation, this
being one of the aspects tested for each system. In
particular, the KB of Disciple increased by 46%
during the evaluation period (from the equivalent of
6229 simple axioms to 9092 simple axioms), which
represents a very high rate of knowledge acquisition
of 286 simple axioms/day.

During August 1999 we conducted a special one
week knowledge acquisition experiment with
Disciple-COA, at the US Army Battle Command
Battle Lab, in Fort Leavenworth, Kansas. In this experiment, four military experts that did not
have any prior knowledge engineering experience received around 16 hours of training in
Artificial Intelligence and the use of Disciple-COA. They then succeeded in training Disciple to
critique COAs with respect to the Principle of Offensive and the Principle of Security, starting
with a KB containing the complete ontology of objects and features but not rules. During the
training process that lasted around three hours, and without receiving any significant assistance
from knowledge engineers, each expert succeeded in extending the KB of Disciple-COA with 28
tasks and 26 rules (approx. 353 simple axioms), following a modeling of the critiquing process
(such as the one in Figure 5) that was provided to them at the beginning of the experiment. At the
end of the experiment they completed a detailed questionnaire inquiring about their perceptions
of the usefulness and usability of the Disciple tool and the Disciple critiquer. An analysis of their
answers revealed again very high scores for the Disciple approach (82.39% on the fitness of the
Disciple critiquing agent to their organizations, 76.32% in the effect that Disciple-COA would
have on their task performance, and 73.72% in system’s usability).

5 Conclusions

We have presented an approach to the development of knowledge bases for KB agents and its
rapid and successful use for the development of a critiquing agent that acts as an assistant to a
military commander. This approach and the developed agent have been evaluated in two
intensive studies. The first study concentrated on the quality of the developed critiquer and the
ability to rapidly extend it by its developers and subject matter experts. The second study
concentrated on the ability of subject matter experts to extend the knowledge base of the
critiquer without any or with very limited assistance from knowledge engineers. Both studies
have shown that Disciple has reached a significant level of maturity, being usable to rapidly
develop complex knowledge based agents. The Disciple approach facilitates the process of
knowledge base development because it reduces the complex operations that are necessary in
order to build a knowledge base to simpler operations. Rather than creating an ontology from
scratch, one can import it from a repository of knowledge and update it accordingly. Rather than
defining general problem solving rules the expert needs only to provide specific examples
because Disciple can generalize them into rules. Rather than creating sentences in an unfamiliar
formal language, the domain expert needs only to understand sentences generated by Disciple
and select the relevant ones. Finally, rather then providing explanations to the system the expert
may only need to provide hints and let the agent find the explanations. As the knowledge

Figure 9: Coverage vs Recall, Pre- and Post-Repair

Coverage

R
ec

al
l

0

20

40

60

80

100

120

140

160

0% 50% 100%

25% 75%

3

5

4

4

5

3

3

4 5

Coverage

(Evaluation Items 3, 4, and 5)

TEK-CYCORP

ISI
(Expect)

GMU
(Disciple)

 12

acquisition experiment has demonstrated, even the current version of Disciple allows a subject
matter expert to perform several such operations without being assisted by a knowledge
engineer. This shows that by further developing this approach it will become possible for domain
experts to directly build knowledge bases. Our long term vision for Disciple, that guides our
future work, is to evolve it to a point where it will allow normal computer users to build and
maintain knowledge bases and knowledge based agents, as easily as they use personal computers
for text processing or email.

Acknowledgments. This research was supported by AFOSR and DARPA through the grant
F49620-97-1-0188, as part of the High Performance Knowledge Bases Program. The evaluation
of the COA critiquers was conducted by Alphatech. The experts that participated in the BCBL
knowledge acquisition experiment were LTC John N. Duquette, LTC Jay E. Farwell, MAJ
Michael P. Bowman, and MAJ Dwayne E. Ptaschek. Ping Shyr, Bogdan Stanescu, Liviu Panait,
Marinel Alangiu and Cristina Cascaval are contributing to the new version of Disciple.

References

Alphatech, Inc. HPKB Course of Action Challenge Problem Specification, Burlington, MA, 1999

Boicu M., Wright K., Marcu D., Lee S.W., Bowman M. and Tecuci G., "The Disciple Integrated
Shell and Methodology for Rapid Development of Knowledge-Based Agents," in AAAI-99/IAAI-
99 Proceedings, Intelligent Systems Demonstrations, AAAI Press, Menlo Park, CA. 1999.

Chaudhri, V. K., Farquhar, A., Fikes, R., Park, P. D., and Rice, J. P., OKBC: A Programmatic
Foundation for Knowledge Base Interoperability. In Proc. AAAI-98, pp. 600 – 607, Menlo Park,
CA: AAAI Press, 1998.

Cohen P., Schrag R., Jones E., Pease A., Lin A., Starr B., Gunning D., and Burke M., The
DARPA High-Performance Knowledge Bases Project, AI Magazine, 19(4),25-49, 1998.

FM-105, US Army Field Manual 100-5, Operations, Headquarters, Department of the Army,
1993.

Genesereth, M. R. and Fikes. R. “Knowledge Interchange Format”, Version 3.0 Reference
Manual. Logic-92-1. Computer Science Department, Stanford University 1992.

Kim, J. and Gil, Y., Deriving Expectations to Guide Knowledge Base Creation, in AAAI-
99/IAAI-99 Proceedings, AAAI Press, Menlo Park, CA. 1999.

Lenat, D. B., CYC: A Large-scale Investment in Knowledge Infrastructure Comm of the ACM
38(11):33-38, 1995.

MacGregor, R., Retrospective on LOOM. Available online as: http://www.isi.edu/isd/LOOM/
papers/macgregor/Loom_Retrospective.html, 1999.

Tecuci, G., Building Intelligent Agents: An Apprenticeship Multistrategy Learning Theory,
Methodology, Tool and Case Studies. London, England: Academic Press, 1998.

Tecuci, G., Boicu, M., Wright, K., Lee, S.W., Marcu, D. and Bowman, M. An Integrated Shell
and Methodology for Rapid Development of Knowledge-Based Agents, in in AAAI-99/IAAI-99
Proceedings, AAAI Press, Menlo Park, CA. 1999.

