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Application domain: Critiquing of Military Courses Of Action 
 
AI technique employed and issue addressed:   
• Knowledge Acquisition Bottleneck 
• Development and implementation of a learning-based methodology and agent shell, called 

Disciple-COA, for direct knowledge acquisition from domain experts with limited assistance 
from knowledge engineers. 

 
Tools used 
• LISP and JAVA were used to develop the Disciple-COA shell 
• Disciple-COA was used to develop the knowledge base for COA critiquing  
 
Application Status 
Disciple-COA and its KB for COA critiquing are research prototypes that have been evaluated in 
several studies as part of DARPA's High Performance Knowledge Bases program. 
 
Abstract 

This paper presents a practical learning-based methodology and agent shell for building 
knowledge bases and knowledge-based agents, and their innovative application to the 
development of a critiquing agent for military courses of action, a challenge problem set by 
DARPA’s High Performance Knowledge Bases program. The agent shell consists of an 
integrated set of knowledge acquisition, learning and problem solving modules for a generic 
knowledge base structured into two main components: an ontology that defines the concepts 
from a specific application domain, and a set of task reduction rules expressed with these 
concepts. The rapid development of the COA critiquing agent was done by importing an initial 
ontology from CYC and by teaching the agent to perform its tasks in a way that resembles how 
an expert would teach a human apprentice when solving problems in cooperation. The 
methodology, the agent shell, and the developed critiquer were evaluated in several intensive 
studies, and demonstrated very good results. 
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1 Introduction 

The purpose of this paper is twofold: 1) to present a maturing learning-based methodology and 
tool for developing knowledge-based agents, and 2) to present an innovative application of this 
methodology and tool. 

This work was performed as part of the High Performance Knowledge Bases (HPKB) program 
which ran from 1997 to 1999, with support from DARPA and AFOSR (Cohen et al. 1998). The 
goal of HPKB was to produce the technology needed to rapidly construct large knowledge-bases 
(with many thousands of axioms) that provide comprehensive coverage of topics of interest, are 
reusable by multiple applications with diverse problem-solving strategies, and are maintainable 
in rapidly changing environments. The organizations participating in HPKB were given the 
challenge of solving a selection of knowledge-based problems in a particular domain, and then 
modifying their systems quickly to solve further problems in the same domain. The aim of the 
exercise was to test the claim that, with the latest AI technology, large knowledge bases can be 
built quickly and efficiently. 

The George Mason University Learning Agents Lab’s approach to HPKB is based on the 
Disciple apprenticeship multistrategy learning theory, methodology and shell for rapid 
development of knowledge bases and knowledge-based agents (Tecuci 1998). Stimulated by the 
HPKB challenge problems, Disciple has been significantly scaled-up. The challenge problem for 
the first year of HPKB was to build a knowledge-based workaround agent that is able to plan 
how a convoy of military vehicles can “work around” (i.e. circumvent or overcome) obstacles in 
their path, such as damaged bridges or minefields (Tecuci et al. 1999). The challenge problem 
for the second year of HPKB was to build a critiquing agent that can evaluate military Courses of 
Action (COA) that were developed as hasty candidate plans for ground combat operations. The 
developed Disciple agents and the Disciple shell were evaluated during intense DARPA annual 
evaluation periods, together with the other tools and systems developed in the HPKB program by 
the other participating teams. In both cases the Disciple agents were developed very rapidly and 
demonstrated performance superior to the other developed systems. 

In this paper we will present the successful application of the Disciple approach to the COA 
challenge problem. We will first describe this challenge problem which in itself represents an 
innovative application of Artificial Intelligence. Then we will present the Disciple tool and 
methodology used to build the COA critiquing agent. After that we will present the results of the 
DARPA's evaluation of the developed tools and COA critiquers. We will also briefly present the 
results of a separate knowledge acquisition experiment with Disciple. We will conclude the 
paper with a discussion of these results and the future direction of our work. 

2 The Course Of Action Challenge Problem 

A military COA is a preliminary outline of a plan for how a military unit might attempt to 
accomplish a mission. A COA is not a complete plan in that it leaves out many details of the 
operation such as exact initial locations of friendly and enemy forces. After receiving orders to 
plan for a mission, a commander and staff complete a detailed and practiced process of analyzing 
the mission, conceiving and evaluating potential COAs, selection of a COA, and the preparation 
of detailed plans to accomplish the mission based on the selected COA. The general practice is 
for the staff to generate several COAs for a mission, and then to make a comparison of those 
COAs based on many factors including the situation, the commander’s guidance, the principles 
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of war, and the tenets of army operations. The commander makes the final decision on which 
COA will be used to generate his or her plan based on the recommendations of the staff and his 
or her own experience with the same factors considered by the staff (Alphatech, 1999). 

The COA challenge problem consists of rapidly developing a knowledge-based critiquing agent 
that can automatically critique COAs for ground force operations, can systematically assess 
selected aspects of a COA, and can suggest repairs to it. The role of this agent is to act as an 
assistant to the military commander, helping the commander to choose between several COAs 
under consideration for a certain mission. 

The input to the COA critiquing agent consists of the description of a COA that includes the 
following aspects: 

a) The COA sketch, such as the one in the top part of Figure 1, is a graphical depiction of the 
preliminary plan being considered. It includes enough of the high level structure and 
maneuver aspects of the plan to show how the actions of each unit fit together to accomplish 
the overall purpose, while omitting much of the execution detail that will be included in the 
eventual operational plan. The three primary elements included in a COA sketch are: control 
measures which limit and control interactions between units; unit graphics that depict known, 
initial locations and make up of friendly and enemy units; and mission graphics that depict 

 
Mission: BLUE-BRIGADE2 attacks to penetrate RED-MECH-REGIMENT2 at 130600 Aug in order to enable the completion of seize 

OBJ-SLAM by BLUE-ARMOR-BRIGADE1. 

Close: BLUE-TASK-FORCE1, a balanced task force (MAIN-EFFORT) attacks to penetrate RED-MECH-COMPANY4, then clears 
RED-TANK-COMPANY2 in order to enable the completion of seize OBJ-SLAM by BLUE-ARMOR-BRIGADE1.  

  BLUE-TASK-FORCE2, a balanced task force (SUPPORTING-EFFORT1) attacks to fix RED-MECH-COMPANY1 and 
RED-MECH-COMPANY2 and RED-MECH-COMPANY3 in order to prevent RED-MECH-COMPANY1 and RED-MECH-
COMPANY2 and RED-MECH-COMPANY3 from interfering with conducts of the MAIN-EFFORT1, then clears RED-
MECH-COMPANY1 and RED-MECH-COMPANY2 and RED-MECH-COMPANY3 and RED-TANK-COMPANY1.| 

… 

Figure 1: A sample of a COA sketch and a fragment of a COA statement. 
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actions and tasks assigned to friendly units. The COA sketch is drawn using a palette-based 
sketching utility. 

b) The COA statement, such as the partial one shown in the bottom part of Figure 1, clearly 
explains what the units in a course of action will do to accomplish the assigned mission. The 
text of a COA statement includes a description of the mission and the desired end state, as 
well as standard elements that describe purposes, operations, tasks, forms of maneuver, units, 
and resources to be used in the COA. The COA statement is expressed in a restricted but 
expressive subset of English. 

c) Selected products of mission analysis, such as the areas of operations of the units, avenues of 
approach, key terrain, unit combat power, and enemy COAs. 

Based on this input, the critiquing agent has to assess various aspects of the COA, such as its 
viability (suitability, feasibility, acceptability and completeness), its correctness (array of forces, 
scheme of maneuver, command and control), and its strengths and weaknesses with respect to 
the Principles of War and the Tenets of Army Operations, to justify the assessments made and to 
propose improvements to the COA.  

In the HPKB program, the COA challenge problem was solved by developing an integrated 
system composed of several critiquers, each built by a different team, to solve a part of the 
overall problem. The participating teams were Teknowledge-Cycorp-AIAI, ISI/Expect, 
ISI/Loom, U.Mass, Northwestern Univ. and GMU. All the teams shared an input ontology and 
used the same internal representation of the input generated by Teknowledge and AIAI from 
COA descriptions provided by Alphatech. 

We developed a COA critiquer, called Disciple-COA, that identifies the strengths and the 
weaknesses of a course of action with respect to the principles of war and the tenets of army 
operations (FM-105, 1993). There are nine principles of war: objective, offensive, mass, 

Reference:  FM100-5 pg 2-4, KF113.1, KF113.2, KF113.3, KF113.4,
KF113.5  - To mass is to synchronize the effects of all elements of
combat power at the proper point and time to achieve decisive results.
Observance of the Principle of Mass may be evidenced by allocation to
the main effort of significantly greater combat power than the minimum
required throughout its mission, accounting for expected losses. Mass is
evidenced by the allocation of significantly more than minimum combat
power required at the decisive point.

There is a strength in COA411
with respect to mass because
BLUE-MECH-COMPANY8 is a
COMPANY-UNIT-DESIGNATION
level maneuver unit assigned to
be the reserve.  This is
considered a strong reserve for
a BRIGADE--UNIT-DESIGNATION
level COA and would be
available to continue the
operation or exploit success.

There is a strength in COA411 with respect to mass because
BLUE-TASK-FORCE1 is the main effort of the COA and it has
been allocated 33% of available combat power but this is
considered just a medium level weighting of the main effort.

There is a major strength in COA411 with respect to mass because BLUE-TASK-FORCE1 is the
MAIN-EFFORT1 and it acts on the decisive point of the COA (RED-MECH-COMPANY4) with a force
ratio of 10.6, which exceeds a recommended force ratio of 3.0.  Additionally, the main effort is
assisted by supporting action SUPPRESS-MILITARY-TASK1 which also acts on the decisive point.
This is good evidence of the allocation of significantly more than minimum combat power
required at the decisive point and is indicative of the proper application of the principle of mass.

Asses COA411 with respect to the Principle of Mass

 

Figure 2: Answers generated by Disciple-COA. 
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economy of force, maneuver, unity of command, security, surprise, and simplicity. They provide 
general guidance for the conduct of war at the strategic, operational and tactical levels. The 
tenets of army operations describe the characteristics of successful operations. They are: 
initiative, agility, depth, synchronization and versatility. Figure 2, for instance, shows some of 
the strengths of the COA from Figure 1 with respect to the Principle of Mass, identified by 
Disciple-COA.  

In addition to generating answers in natural language, Disciple also provides the reference 
material based on which the answers are generated, as shown in the bottom left of Figure 2. Also, 
the Disciple-COA agent can provide justifications of the generated answers at three levels of 
detail, from a very abstract one that shows the general line of reasoning followed, to a very 
detailed one that indicates each of the knowledge pieces used in generating the answer.  

In the next section we will present the general methodology used to build Disciple-COA and the 
architecture of Disciple-COA. 

3 General presentation of Disciple-COA 

Disciple is the name of an evolving theory, methodology and shell for rapid development of 
knowledge bases and knowledge-based agents, by subject matter experts, with limited assistance 
from knowledge engineers (Tecuci, 1998). The current Disciple shell consists of an integrated set 
of knowledge acquisition, learning and problem solving modules for a generic knowledge base 
structured into two main components: an ontology that defines the concepts from a specific 
application domain, and a set of problem solving rules expressed with these concepts. The 
problem solving approach of an agent built with Disciple is task reduction, where a task to be 
accomplished by the agent is successively reduced to simpler tasks until the initial task is 
reduced to a set of elementary tasks that can be immediately performed. Therefore, the rules 
from the KB are task reduction rules. The ontology consists of hierarchical descriptions of 
objects, features and tasks, represented as frames, according to the knowledge model of the Open 
Knowledge Base Connectivity (OKBC) protocol (Chaudhri et al. 1998). 

The development of a specific Disciple agent includes the following processes: 1) the 
customization of the problem solver and the interfaces of the Disciple shell for that particular 
domain; 2) the building of the domain ontology by importing knowledge from external 
repositories of knowledge and by manually defining the other components of the ontology, and 
3) teaching the agent to perform its tasks, 
teaching that resembles how an expert 
would teach a human apprentice when 
solving problems in cooperation. Following 
this process we have developed Disciple-
COA which is presented in Figure 3. 

For Disciple-COA, an initial ontology was 
defined by importing the input ontology 
built by Teknowledge and AIAI for the 
COA challenge problem. The input 
ontology contains the terms needed to 
represent the COAs to be critiqued, and was 
shared by all the developed critiquers. The 
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top level of this ontology is represented in Figure 4. It includes concepts for representing 
geographical information, military organizations and equipment, descriptions of specific COAs, 
military tasks, operations and purposes. As shown in the top left of Figure 3, this ontology was 
first translated from CYC’s language into KIF (Genesereth and Fikes, 1992) and from there it 
was translated into the representation language of Disciple and the other critiquers. 

The imported ontology was further developed by using the ontology building tools of Disciple 
shown in the top right side of Figure 3 (the object, feature, task and rule editors and browsers).  

As presented in the previous 
section, the COA to be critiqued is 
represented as a sketch and a 
textual description. A statement 
translator (developed by AIAI and 
Teknowledge), a COA sketcher 
(developed by Teknowledge), and 
a geographic reasoner (developed 
by Northwestern Univ.) transform 
and fuse these external 
representations into a description 
in the CYC language, according to the input ontology. This description is imported into 
Disciple’s ontology by the problem mediator module of Disciple.  

The next step in the development of the Disciple-COA critiquer was to teach Disciple to critique 
COAs with respect to the principles of war and the tenets of army operations. The expert loads 
the description of a specific COA, such as COA411 represented in Figure 1, and then invokes the 
Cooperative Problem Solver with an initial task of critiquing the COA with respect to a certain 
principle or tenet. Disciple uses its task reduction rules to reduce the current task to simpler 
tasks, showing the expert the reductions found. The expert may accept a reduction proposed by 
the agent, may reject it or may decide to define a new reduction. From each such interaction 
Disciple will either learn a new task reduction rule or will refine a previously learned rule, as 
explained in the following. After a new rule is learned or an existing rule is refined, the 
Cooperative Problem Solver resumes the task reduction process until a solution of the initial 
problem is found. 

Initially Disciple does not contain any rules. Therefore all the problem solving steps (i.e. task 
reductions) must be provided by the expert, as illustrated in Figure 5, and explained in the 
following.  

To assess COA411 with respect to the Principle of Security the expert (and Disciple) needs a 
certain amount of information which is obtained by asking a series of questions (see Figure 5). 
The answer to each question allows one to reduce the current assessment task to a more detailed 
one. This process continues until the expert (and Disciple) has enough information about 
COA411 to make the assessment. As shown in Figure 5, the initial task is reduced to that of 
assessing the security of COA411 with respect to the countering of enemy reconnaissance. Then 
one asks whether there is any enemy reconnaissance unit present in COA411. The answer 
identifies RED-CSOP1 as being such a unit because it is performing the task SCREEN1. 
Therefore, the task of assessing security for COA411 with respect to countering enemy 
reconnaissance is now reduced to the better defined task of assessing security when enemy 

ACTION

<OBJECT>

MILITARY-PURPOSE

MILITARY-EVENT

MODERN-MILITARY-ORGANIZATION

ORGANIZATION

MILITARY-OPERATION MILITARY-TASK

PURPOSE

MILITARY-EQUIPMENT

EQUIPMENT

GEOGRAPHICAL-REGION

COA-SPECIFICATION-MICROTHERY

PLAN

Figure 4: Top level of the ontology imported from CYC.
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reconnaissance is present. The next 
question to ask is whether the enemy 
reconnaissance unit is destroyed or 
not. In the case of COA411, RED-
CSOP1 is destroyed by the task 
DESTROY1. Therefore one can 
conclude that there is a strength in 
COA411 with respect to the Principle 
of Security because the enemy 
reconnaissance unit is countered. 

To define a reduction of the current 
task the expert uses the Example 
Editor. This, in turn, may invoke the 
Object Editor, the Feature Editor or 
the Task Editor, if the specification of 
the example involves new knowledge 
elements that are not present in the 
current ontology. Once the reduction 
has been defined by the expert the 
Rule Learner is invoked to learn a 
general rule from each specific task 
reduction. Figure 6 shows some details of the process of teaching Disciple. 

The left hand side of Figure 6 represents the reasoning process of the expert, the question and the 
answer being in free natural language format. To learn a rule from this example of task 
reduction, Disciple needs to find an explanation of why the task from the top of Figure 6 is 
reduced to the task from the bottom of Figure 6. The explanation to be found, expressed in 
Disciple’s language, is shown in the right hand side of Figure 6. Formally, this explanation 
consists of a set of paths in Disciple’s ontology, each path being a sequence of objects and 
features. 

The information from the explanation is included in the question and the answer from the left 
hand side of Figure 6. However, the current version of Disciple does not have the ability to 
understand natural language (although this is a topic of current research). The main role of the 
question and the answer is to focus the reasoning process of the expert. Also, the domain expert 
is not a knowledge engineer and therefore cannot be assumed to be able to provide Disciple with 
the explanation. This would be very difficult for the expert for at least two reasons. First of all 
there are many hundreds of objects and features names and the domain expert should not be 
required to learn them. Secondly, the domain expert should not be required to use the formal 
syntax of Disciple, to be able to correctly define formal explanations.  

The current approach to explanation generation relies on the complementary abilities of the 
domain expert and Disciple. The expert cannot formulate correct explanations, but he can 
provide some hints to Disciple, for instance by pointing to an object that the explanation should 
contain. Also, he can recognize a correct explanation piece proposed by Disciple. Disciple, on 
the other hand, can generate syntactically correct explanation pieces. It can also use analogical 
reasoning and the hints received from the expert to focus its search and to identify a limited 
number of plausible explanations from which the expert will have to select the correct ones. 

Rule
Learning

Rule
Learning

Rule
Learning Yes, RED-CSOP1 is destroyed by DESTROY1

Is the enemy reconnaissance unit destroyed?

Is an enemy reconnaissance unit present?

Does the COA include security and counter-recon actions, 
a security element, a rear element, and identify risks?

Assess security wrt countering enemy reconnaissance
for-coa COA411

Assess security when enemy recon is present
for-coa COA411
for-unit RED-CSOP1
for-recon-action SCREEN1

 Yes, RED-CSOP1 which is performing
the reconnaissance action SCREEN1

Report strength in security because of countering enemy recon
for-coa COA411
for-unit RED-CSOP1
for-recon-action SCREEN1
for-action DESTROY1
with-importance HIGH

I consider enemy reconnaissance

Assess COA wrt Principle of Security
for-coa COA411

R
$A
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W
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S
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Figure 5: Task reductions and the rules learned from them. 
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The explanation generation strategy 
is based on an ordered set of 
heuristics for analogical reasoning. 
They exploit the hierarchies of 
objects, features and tasks to identify 
the rules that are similar to the 
current reduction, and to use their 
explanations as a guide to search for 
similar explanations for the current 
example. This cooperative 
explanation-generation process 
proved to be very effective, as 
demonstrated by the successful 
knowledge acquisition experiment 
described in section 4. 

From the example reduction and its explanation in Figure 6, Disciple automatically generated the 
plausible version space rule in Figure 7. This is an IF-THEN rule, the components of which are 
generalizations of the elements of the example in Figure 6. In addition, the rule contains two 
conditions for its applicability, a plausible lower bound condition and a plausible upper bound 
condition. These conditions approximate an exact applicability condition that Disciple attempts 
to learn. The plausible lower bound condition covers only the example in Figure 6, restricting the 
variables from the rule to take only the values from this example. It also includes the relations 
between these variables that have been identified as relevant in the explanation of the example. 
The plausible upper bound condition is the most general generalization of the plausible lower 
bound condition. It is obtained by taking into account the domains and the ranges of the features 
from the plausible lower bound conditions and the tasks, in order to determine the possible 
values of the variables. The domain of a feature is the set of objects that may have that feature. 
The range is the set of possible values of that feature. For instance, ?O2 is the value of the task 
feature “FOR-UNIT”, and has as features “SOVEREIGN-ALLEGENCE-OF-ORG” and “TASK”. 
Therefore, any value of ?O2 has to be in the intersection of the range of “FOR-UNIT”, the domain 
of “SOVEREIGN-ALLEGENCE-OF-ORG”, and the domain of “TASK”. This intersection is 
“MODERN-MILITARY-UNIT-DEPLOYABLE”. 

The learned PVS rules, such as the one in Figure 7, are used in problem solving to generate task 
reductions with different degrees of plausibility, depending on which of its conditions are 
satisfied. If the Plausible Lower Bound Condition is satisfied, then the reduction is very likely to 
be correct. If the Plausible Lower Bound Condition is not satisfied, but the Plausible Upper 
Bound Condition is satisfied, then the solution is considered only plausible. Any application of a 
PVS rule however, either successful or not, provides an additional (positive or negative) 
example, and possibly an additional explanation, that are used by the agent to further improve 
the rule through the generalization and/or specializations of its conditions. 

Let us consider again the task reductions from Figure 5. At least for the elementary tasks, such as 
the one from the bottom of the figure, the expert needs also to express them in natural language: 
“There is a strength with respect to surprise in COA411 because it contains aggressive security/counter -
reconnaissance plans, destroying enemy intelligence collection units and activities. Intelligence collection by 
RED-CSOP1 will be disrupted by its destruction by DESTROY1”. Similarly, the expert would need to 

Question:
Is an enemy reconnaissance unit present?

Learn
 the rule

R$ASWCER-001

IF the task to accomplish is:
ASSESS-SECURITY-WRT-COUNTERING-ENEMY-RECONNAISSANCE
            FOR-COA ?O1

Question:  Is a enemy recon unit present in <| ?O1 |> ?
Answer: Yes, the enemy unit <| ?O2 |> is performing the action
 <| ?O3 |> which is a reconnaissance action.

Then accomplish the task:
    ASSESS-SECURITY-WHEN-ENEMY-RECON-IS-PRESENT
                  FOR-COA ?O1
                  FOR-UNIT ?O2
                  FOR-RECON-ACTION ?O3

Plausible Upper Bound Condition:
?o1 is COA-SPECIFICATION-MICROTHEORY
?o2 is MODERN-MILITARY-UNIT--DEPLOYABLE
     SOVEREIGN-ALLEGIANCE-OF-ORG ?O4  
     TASK ?O3
?O3 is INTELLIGENCE-COLLECTION--MILITARY-TASK
?O4 is RED--SIDE

Plausible Lower Bound Condition:
?o1 is COA-SPECIFICATION-MICROTHEORY
?o2 is MODERN-MILITARY-UNIT--DEPLOYABLE
     SOVEREIGN-ALLEGIANCE-OF-ORG ?O4 
     TASK ?O3
?O3 is INTELLIGENCE-COLLECTION--MILITARY-TASK
?O4 is RED--SIDE

Justification:
     ?O2 SOVEREIGN-ALLEGIANCE-OF-ORG ?O4
     ?O2 TASK ?O3
     ?O4 IS ALWAYS RED--SIDE

Assess security wrt countering enemy reconnaissance
for-coa    COA411

Assess security when enemy recon is present
for-coa    COA411
for-unit   RED-CSOP1
for-recon-action   SCREEN1

Logic

Explanation:
RED-CSOP1  SOVEREIGN-ALLEGIANCE-OF-ORG  RED--SIDE
RED-CSOP1  TASK  SCREEN1
SCREEN1  IS  INTELLIGENCE-COLLECTION--MILITARY-TASK

Answer:

 Yes, RED-CSOP1 which is performing
the reconnaissance action SCREEN1

Natural Language

 

Figure 6: Teaching Disciple to reduce a task. 
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indicate the source material for the concluded 
assessment. The learned rules will contain 
generalizations of these phrases that are used 
to generate answers in natural language, as 
illustrated in Figure 2. Similarly, the 
generalizations of the questions and answers 
from the rules applied to generate a solution 
are used to produce an abstract justification of 
the reasoning process. 

Comparing the left hand side of Figure 6 
(which is defined by the domain expert) with 
the rule from Figure 7 (which is learned by 
Disciple) suggests the usefulness of Disciple 
for knowledge acquisition. In the traditional 
knowledge engineering approach, a 
knowledge engineer would need to manually 
define and debug a rule like the one in Figure 
7. With Disciple, the domain expert (possibly 
assisted by a knowledge engineer) needs only 
to define an example reduction, because 
Disciple will learn and refine the 
corresponding rule. That this approach works 
very well is demonstrated by the intense experimental studies conducted with Disciple and 
reported in the next section. 

4 Evaluation of the COA Critiquers and of the Knowledge Acquisition Tools 

In addition to GMU, other three research groups have developed COA critiquers as part of the 
HPKB program. Teknowledge and CYC have developed a critiquer based on the CYC system 
(Lenat, 1995). The other two critiquers have been developed at ISI, one based on the Expect 
system (Kim and Gil, 1999), and the other based on the Loom system (MacGregor, 1999). All 
the critiquers were evaluated as part of HPKB’s annual evaluation. There was a one week dry 
run evaluation (May 10-15, 1999) of all the COA critiquers that had as a main objective to debug 
the evaluation mechanics. The actual evaluation took place during the period July 6-16, 1999, 
and was organized as five evaluation items of increasing difficulty. Each item consisted of 
descriptions of various COAs and a set of questions to be answered about each of them. Item1 
consisted of COAs and questions that were previously provided by DARPA to guide the 
development of the COA critiquing agents. Item2 included new test questions about the same 
COAs. Items 3, 4, and 5 consisted of new COAs that were increasingly more complex and 
required further development of the COA agents in order to properly answer the asked questions. 
Each of the Items 3, 4 and 5 consisted of two phases.  

In the first phase each team had to provide initial system responses. Then the evaluator issued the 
model answers and each team had a limited amount of time to repair its system, perform further 
knowledge acquisition, and to generate revised system responses. 

R$ASWCER-001
IF the task to accomplish is:
ASSESS-SURPRISE-WRT-COUNTERING-ENEMY-RECONNAISSANCE
            FOR-COA ?O1

Question: Is an enemy recon unit present in ?O1  ?
Answer: Yes, the enemy unit ?O2 is performing the action
               ?O3 which is a reconnaissance action.

THEN accomplish the task:
    ASSESS-SURPRISE-WHEN-ENEMY-RECON-IS-PRESENT
                  FOR-COA ?O1
                  FOR-UNIT ?O2
                  FOR-RECON-ACTION ?O3

Plausible Upper Bound Condition:
?O1  IS  COA-SPECIFICATION-MICROTHEORY
?O2  IS  MODERN-MILITARY-UNIT--DEPLOYABLE
        SOVEREIGN-ALLEGIANCE-OF-ORG ?O4 
        TASK ?O3
?O3  IS  INTELLIGENCE-COLLECTION--MILITARY-TASK
?O4  IS  RED--SIDE

Plausible Lower Bound Condition:
?O1  IS  COA411
?O2  IS  RED-CSOP1
        SOVEREIGN-ALLEGIANCE-OF-ORG ?O4 
        TASK ?O3
?O3  IS  SCREEN1
?O4  IS  RED--SIDE

Explanation: 
?O2  SOVEREIGN-ALLEGIANCE-OF-ORG  ?O4  IS  RED--SIDE
?O2  TASK  ?O3  IS  INTELLIGENCE-COLLECTION--MILITARY-TASK

 
Figure 7: Plausible version space rule learned  
from the example and explanation in Figure 6. 
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The responses of each system were scored by a team of domain experts along the following 
dimensions and associated weights: Correctness-50% (matches model answer or is otherwise 
judged to be correct), Justification-30% (scored on presence, soundness, and level of detail), Lay 
Intelligibility-10% (degree to which a lay observer can understand the answer and the 
justification), Sources-10% (degree to which appropriate sources are noted), and Proactivity-10% 
extra credit (appropriate corrective actions or other information suggested to address the 
critique). Based on these scores several classes of metrics have been computed, including Recall 
and Precision. Recall is obtained by dividing the score for all answers provided by a critiquer to 
the total number of model answers for the asked questions. “Precision” is obtained by dividing 
the same score by the total number of answers provided by that system (both the model answers 
provided by the evaluator and the new answers provided by the critiquer). The results obtained 
by the four evaluated critiquers are presented in Figure 8 and show that Disciple-COA has 
obtained the best results out of the four developed critiquers.  

Figure 9 compares the recall and the coverage of the developed critiquers for the last three most 
complex items of the evaluations. For each evaluation item, the beginning of each arrow shows 
the coverage and recall for the initial testing phase, and the end of the arrow shows the same data 
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Figure 8: Comparison of the performance of the developed COA critiquers. 
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for the modification phase. In this case the systems 
that are above and to the right are superior to the 
other systems. This graph shows that all the systems 
increased their coverage during the evaluation, this 
being one of the aspects tested for each system. In 
particular, the KB of Disciple increased by 46% 
during the evaluation period (from the equivalent of 
6229 simple axioms to 9092 simple axioms), which 
represents a very high rate of knowledge acquisition 
of 286 simple axioms/day. 

During August 1999 we conducted a special one 
week knowledge acquisition experiment with 
Disciple-COA, at the US Army Battle Command 
Battle Lab, in Fort Leavenworth, Kansas. In this experiment, four military experts that did not 
have any prior knowledge engineering experience received around 16 hours of training in 
Artificial Intelligence and the use of Disciple-COA. They then succeeded in training Disciple to 
critique COAs with respect to the Principle of Offensive and the Principle of Security, starting 
with a KB containing the complete ontology of objects and features but not rules. During the 
training process that lasted around three hours, and without receiving any significant assistance 
from knowledge engineers, each expert succeeded in extending the KB of Disciple-COA with 28 
tasks and 26 rules (approx. 353 simple axioms), following a modeling of the critiquing process 
(such as the one in Figure 5) that was provided to them at the beginning of the experiment. At the 
end of the experiment they completed a detailed questionnaire inquiring about their perceptions 
of the usefulness and usability of the Disciple tool and the Disciple critiquer. An analysis of their 
answers revealed again very high scores for the Disciple approach (82.39% on the fitness of the 
Disciple critiquing agent to their organizations, 76.32% in the effect that Disciple-COA would 
have on their task performance, and 73.72% in system’s usability). 

5 Conclusions 

We have presented an approach to the development of knowledge bases for KB agents and its 
rapid and successful use for the development of a critiquing agent that acts as an assistant to a 
military commander. This approach and the developed agent have been evaluated in two 
intensive studies. The first study concentrated on the quality of the developed critiquer and the 
ability to rapidly extend it by its developers and subject matter experts. The second study 
concentrated on the ability of subject matter experts to extend the knowledge base of the 
critiquer without any or with very limited assistance from knowledge engineers. Both studies 
have shown that Disciple has reached a significant level of maturity, being usable to rapidly 
develop complex knowledge based agents. The Disciple approach facilitates the process of 
knowledge base development because it reduces the complex operations that are necessary in 
order to build a knowledge base to simpler operations. Rather than creating an ontology from 
scratch, one can import it from a repository of knowledge and update it accordingly. Rather than 
defining general problem solving rules the expert needs only to provide specific examples 
because Disciple can generalize them into rules. Rather than creating sentences in an unfamiliar 
formal language, the domain expert needs only to understand sentences generated by Disciple 
and select the relevant ones. Finally, rather then providing explanations to the system the expert 
may only need to provide hints and let the agent find the explanations. As the knowledge 

Figure 9: Coverage vs Recall, Pre- and Post-Repair
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acquisition experiment has demonstrated, even the current version of Disciple allows a subject 
matter expert to perform several such operations without being assisted by a knowledge 
engineer. This shows that by further developing this approach it will become possible for domain 
experts to directly build knowledge bases. Our long term vision for Disciple, that guides our 
future work, is to evolve it to a point where it will allow normal computer users to build and 
maintain knowledge bases and knowledge based agents, as easily as they use personal computers 
for text processing or email. 
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