

Learning Complex Problem Solving Expertise from Failures

Cristina Boicu, Gheorghe Tecuci, Mihai Boicu

Learning Agents Center, Department of Computer Science, MS 6B3
George Mason University, 4400 University Drive, Fairfax, VA 22030-4444

{ccascava, tecuci, mboicu}@gmu.edu, http://lac.gmu.edu

Abstract

Our research addresses the issue of developing

knowledge-based agents that capture and use the problem
solving knowledge of subject matter experts from diverse
application domains. This paper emphasizes the use of
negative examples in agent learning by presenting several
strategies for capturing expert’s knowledge when the
agent fails to correctly solve a problem. These strategies
have been implemented into the Disciple learning agent
shell and used in complex application domains such as
intelligence analysis, center of gravity determination, and
emergency response planning.

1. Introduction

We address the development of knowledge-based

agents that can rapidly capture and use the problem
solving knowledge of subject matter experts. Our
approach is to develop a learning and problem solving
agent, called Disciple, which can be directly taught by a
subject matter expert by giving the agent specific problem
solving examples and explanations, and correcting its
behavior when it attempts to solve new problems [1]. We
have developed applications in several domains, including
intelligence analysis, center of gravity determination,
emergency response planning, course of action critiquing,
and PhD advisor selection.

In this paper we will consider the intelligence analysis
domain. For this domain, we have developed an agent to
assist an intelligence analyst in assessing the likelihood of
various hypotheses, such as whether a specific terrorist
group has nuclear weapons. To solve this problem, we
have developed a systematic approach to hypothesis and
source analysis that is both natural for an analyst and
appropriate for an automated agent. This approach is
based on Disciple’s task reduction reasoning paradigm
[2]. To illustrate it, let us consider that the analyst
specifies an initial intelligence analysis task to solve (e.g.
“Assess whether Terrorist_Group_T has nuclear
weapons”). This complex task is successively reduced to
simpler tasks, guided by questions and answers, until
elementary solutions are reached. Then these solutions are
successively composed, until the solution to the initial
task is found, as shown in Figure 1. Generally such a

reasoning tree contains thousands of reasoning steps. At
the top of the tree, the initial hypothesis is reduced to
simpler hypotheses, until some elementary hypotheses are
reached. Then potentially relevant pieces of evidence are
identified and analyzed to determine to what extent they
favor or disfavor the corresponding hypotheses. The
analysis takes into account the chains of custody of the
pieces of evidence, as well as the competence and the
credibility of the corresponding primary and intermediary
sources.

Each task reduction step from the reasoning tree is
obtained by applying reasoning rules from the agent’s
knowledge base. These rules have applicability conditions
expressed with the terms from the agent’s object
ontology, which is a hierarchical representation of the
objects and features from the application domain.

An example of a task reduction rule is shown in Figure
2. This rule has an IF-THEN structure containing an
informal section (shown in the top part of Figure 2) which
preserves the expert's natural language and is used in the
agent-user communication. The rule also contains a
formal section (shown in the bottom part of Figure 2)
which is used in the internal reasoning of the agent. This
particular rule has a main applicability condition (which
has to be satisfied by some instances from the object
ontology, in order for the rule to be applicable) and two
except-when conditions (which should not be satisfied by
any instance in the object ontology).

S1

S11 S1n

S111 S11mT11mT111

T1nT11

T1

…

…

Sa
11m Sd

11mTd
11mTa

11m
…

Assess whether
Terrorist_Group_T
has nuclear
weapons

It is unlikely that
Terrorist_Group_T

has nuclear
weapons

Figure 1: Task reduction paradigm

In Proceedings of the Sixth International Conference on Machine Learning and Applications (ICMLA'07)
Cincinnati, Ohio, December 13-15, 2007.

Moreover, this rule is only partially learned and each
condition is represented by two plausible bounds, a
plausible upper bound (PUB) condition, and a plausible
lower bound (PLB) condition. During further learning, the
rule may be refined with additional except-when
conditions, and the two bounds of each condition will
converge toward one another [2].

One characteristic aspect of our approach is that these
rules are learned by the agent through a mixed-initiative
interaction, based on specific examples of task reduction
steps and their explanations provided by the expert. For
instance, when the agent does not know how to solve a
task, the expert may provide one or more reduction steps.
From these steps and their explanations, the agent will
learn general rules. These rules will be used in future
problem solving situations, when either their PLB
conditions or their PUB conditions are satisfied. This will
allow the agent to collaborate with the expert in solving
new problems, and to refine the rules based on the
correctness of the reductions generated by them (where
the correct reductions are used as positive examples of the
rules, and incorrect ones as negative examples) [3]. In this
paper we will concentrate on the problem of using the
negative examples in the rule refinement process.

Section 2 will present the mixed-initiative problem
solving process. Section 3 will describe various rule
refinement strategies based on negative examples, using
an illustration from the intelligence analysis domain.
Section 4 will present experimental results and Section 5
will conclude with a discussion of related research.

2. Mixed-Initiative Problem Solving

During the mixed-initiative problem solving process,

the expert and the agent solve together a problem. Initially
the agent has the initiative, searches for applicable rules in
its knowledge base, and generates plausible solutions of
the problem. Next, the expert may take the initiative to
critique the solutions proposed by the agent. We will
distinguish between the following situations:

1) The expert accepts a reasoning step performed by
the agent, using a given problem solving rule. a) If the
expert does not provide any additional explanation, then
the agent will generalize the applicability condition of the
corresponding rule in order to cover this example and it
will keep the confirmed reasoning step as a positive
example for this rule. b) If the expert provides more

explanations for this reasoning step, then
these explanations will be used by the agent to
refine the main applicability condition of this
rule. The expert may even accept an entire
reasoning tree, in which case all the rules used
in that tree will be refined with their
corresponding instantiations used as positive
examples.

2) The expert rejects a reasoning step
performed by the agent. a) If the expert
provides an explanation why it is incorrect,
then the agent will keep this reasoning step as
a negative example and the explanation will
be used by the agent to specialize the rule to
no longer cover this negative example. b) If
the expert does not provide any explanation,
then the agent will keep this reasoning step as
a negative exception, which will need to be
analyzed later by the expert during the
exception-based learning and refinement
process [4].

3) The expert may also extend the
reasoning tree with new steps that solve the
current problem. Then, the expert will help
the agent to understand these reasoning steps,
based on which the agent will learn general
problem solving rules.

During this process, the ontology may also
be extended with new elements in order to
allow the refinement of the rules to correctly
cover the generated positive examples and to
not cover the negative examples.

Figure 2: A task reduction rule

MAIN CONDITION
PUB Condition
?O1 is actor
?O2 is nuclear_state

IF
Assess whether there are states willing to sell nuclear weapons to ?O1

THEN
Assess whether ?O2 is willing to sell nuclear weapons to ?O1

Question: Which is a nuclear state that is not an enemy of ?O1 and does
not oppose the proliferation of nuclear weapons?
Answer: ?O2

Positive Example: (?O1=Terrorist_Group_T ?O2=State_A)

PLB Condition
?O1 is terrorist_group
?O2 is nuclear_state

Negative Example: (?O1=Terrorist_Group_T ?O2=State_B)

EXCEPT-WHEN CONDITION
PUB Condition
?O1 is actor
?O2 is actor

perceives_as_enemy ?O1

PLB Condition
?O1 is terrorist_group
?O2 is nuclear_state

perceives_as_enemy ?O1

EXCEPT-WHEN CONDITION
PUB Condition
?O1 is actor
?O2 is actor

degree_of_opposition_to_nuclear
weapons_proliferation ?S1

?S1 is [very-low, very high]

PLB Condition
?O1 is terrorist_group
?O2 is nuclear_state

degree_of_opposition_to_nuclear
weapons_proliferation ?S1

?S1 is [very-high, very-high]

Negative Example: (?O1=Terrorist_Group_T ?O2=State_C)

In Proceedings of the Sixth International Conference on Machine Learning and Applications (ICMLA'07)
Cincinnati, Ohio, December 13-15, 2007.

3. Rule Refinement Strategies Based on
Negative Examples

When the agent generates a reasoning step which is

rejected by the expert, the agent must refine the condition
of the rule, to no longer cover this negative example.
However, there are several strategies to modify the rule’s
condition to no longer cover this incorrect reduction. 1)
One strategy is to specialize the main condition to no
longer cover the example. 2) Another strategy is to
generalize one of the rule’s except-when conditions to
cover the example. 3) Yet another strategy is to add a new
except-when condition to the rule.

There are many difficulties in the refinement of a rule
based on a negative example. One difficulty is the risk of
over specialization of the rule. To avoid this risk we use
except-when plausible version space conditions to better
approximate the knowledge to be learned from the
negative examples. These conditions have a
conservatively generated plausible lower bound, covering
only the examples that are very similar with the negative
examples rejected by the expert. When a new example is
rejected, the lower bound is minimally generalized to
cover also this new example. This condition has also an
upper bound, which is the maximal generalization of the
rejected examples. However, this bound will probably
cover also correct examples. In order to allow the
refinement of existing except-when conditions of a
plausible version space rule, the problem solver needed to
be modified to allow the generation of some examples
that are covered by the upper bound of except-when
conditions. Disciple uses these examples to further refine
the rules.

Another difficulty of rule refinement based on negative
examples is the risk of proliferation of unrefined except-
when conditions. This means that for each new incorrect
example the user will learn a new except-when condition
instead of selecting other refinement strategy (i.e.
specializing the main condition or an except-when
condition). In order to avoid this, the agent will prefer the
strategies to refine existing conditions and if those are not
acceptable, it will learn a new except-when condition.

To illustrate the rule refinement process, let us
consider that the expert provides the reduction step shown
in Figure 3, for assessing whether there are states willing

to sell nuclear weapons to a specific terrorist group T.
Based on this initial example and its explanation
(“State_A is nuclear_state”), the agent learns the general
task reduction rule shown in Figure 4.

The agent applies this learned rule in problem solving
and generates other task reduction steps to be analyzed by
the expert. The expert notices a solution where a state
(State_B) which is an enemy of Terrorist_Group_T,
would sell weapons to it, and rejects it as incorrect. This
initiates an explanation generation process in which the
expert collaborates with the agent to justify why this
example is incorrect: “State_B perceives as enemy
Terrorist_Group_T”, therefore it would not be willing to
sell nuclear weapons to this group. Based on this
explanation, the agent generates a plausible version space
except-when condition and adds it to the rule. The
addition of the except-when condition specializes both the
lower and upper bounds of the rule’s overall applicability
condition.

The agent re-applies the refined rule. This time the
expert notices a solution where a state (State_C) that is
highly opposed to nuclear proliferation would sell nuclear
weapons to Terrorist_Group_T. This reduction step is
rejected by the expert and the agent generates a new
except-when condition and adds it to the rule. The rule
refined with these except-when conditions is shown in
Figure 2.

Other types of failure explanations may lead to
different modifications of the rule. For instance, another
strategy is to find an additional feature of the positive
examples of the rule which is not a feature of the current
negative example. This feature would then be added to the
corresponding object from the main condition (both in the
upper bound and in the lower bound).

Additional negative examples may lead to
specializations of the main condition, or to generalizations
of the lower bounds of existing except-when conditions,
or to the learning of new except-when conditions.

The rule refinement method with a negative example is
presented in more details in Table 1. As mentioned

Assess whether State_A is willing to sell
nuclear weapons to Terrorist_Group_T

Assess whether there are states willing to sell
nuclear weapons to Terrorist_Group_T

Question: Which is a nuclear state ?

Answer: State_A

We need to:

THEN we need to:

Figure 3: An example of a task reduction step

MAIN CONDITION
PUB Condition
?O1 is actor
?O2 is nuclear_state

IF
Assess whether there are states willing to sell nuclear
weapons to ?O1

THEN
Assess whether ?O2 is willing to sell nuclear weapons to ?O1

Question: Which is a nuclear state ?
Answer: ?O2

Positive Example: (?O1=Terrorist_Group_T ?O2=State_A)

PLB Condition
?O1 is terrorist_group
?O2 is nuclear_state

Figure 4: The rule learned from the example in Figure 3

In Proceedings of the Sixth International Conference on Machine Learning and Applications (ICMLA'07)
Cincinnati, Ohio, December 13-15, 2007.

before, there are situations when several refining
strategies may be applied. In the case of an example that
is covered by the lower bound of the rule’s main
condition (without being covered by any lower bound of
the except-when conditions) the agent will try first to
elicit an explanation from the expert that would specialize
the lower bound of the main condition, to no longer cover
the negative example. If such a failure explanation is not
found, the agent will try to elicit another explanation of
why the example is incorrect, based on which it will learn
an except-when condition.

Similarly, for a negative example that is covered by the
upper bound of the rule’s main condition (without being

covered by the lower bound of the main condition and by
the lower bound of any except-when condition) the agent
will try first to specialize the upper bound of the main
condition, to no longer cover the negative example. If
such a specialization is not acceptable, the agent will try
to elicit another explanation of why the example is
incorrect, based on which it will learn a new except-when
condition. In this case, the agent will also test whether this
new except-when condition is more general than an
existing except-when condition from the rule, in which
case it will apply a lazy refinement method [3]. The agent
will create a new rule in which the newly created except-
when condition will replace the existing one which is less

general, postponing the decision on
whether to keep two separate rules
or just the new version, until more
examples are analyzed by the
expert.

All the above strategies refine
the formal applicability condition
of the rule (i.e. main condition,
except-when condition). This,
sometimes, requires also the
refinement of the question and its
answer from the informal part of
the rule (see the top part of the rule
in Figure 2), to better express in
natural language the meaning of
the formal condition. For such
cases, we have developed a method
which allows the expert to modify
the informal description of the rule,
by modifying a specific example of
that rule. For instance, the expert
may modify the question of the
initial positive example from
“Which is a nuclear state?” to
“Which is a nuclear state that is not
an enemy of Terrorist_Group_T
and does not oppose the
proliferation of nuclear weapons?”
This updated question would
incorporate the knowledge from
the except-when conditions of the
refined rule shown in Figure 2.

The modifications performed on
the example are generalized and
this generalization is used to
update the informal structure of the
rule. If the agent cannot decide
whether these modifications are
applicable also for previous rules
examples, then a lazy rule
refinement strategy is invoked [3].

Given:
• R – a reasoning rule
• E – a reasoning step judged by the expert as a negative example

Refine rule R to no longer cover the negative example E:

1. if E is covered by the upper bound of R’s main condition and there is an except
when condition’s lower bound that covers E then
 keep E as a negative example for the main condition and as a positive
 example for the except-when condition
 return

2. for each except-when condition EW of the rule R do
 if E is covered by the upper bound of R’s main condition and
 E is covered by EW upper bound and
 E is not covered by EW lower bound then
 attempt to generalize EW lower bound to cover E
 if any generalization performed then
 keep E as a negative example for the main condition and as a
 positive example for the except-when condition
 return

3. if E is covered by the lower bound of R’s main condition and E is not covered by
any of the except-when condition’s lower bounds then
 try Main-Condition-Lower-Bound-Specialization (R, E)
 if success then keep E as a negative example and return
 else continue with step 5

4. if E is covered by the upper bound of R’s main condition but not its lower
bound, and E is not covered by any except-when condition’s lower bound then
 try Main-Condition-Upper-Bound-Specialization (R, E)
 if success then keep E as a negative example and return
 else continue with step 5

5. ask for an explanation why the example E is wrong
if an explanation is provided then
 learn an except-when condition EW-new corresponding to this explanation
 if there is another except-when condition EW such that EW-new is more
 general than EW
 create chain with a new rule obtained by replacing EW with EW-new
 return
 else add the new EW-new condition to rule R

 else keep E as a negative exception //if no explanation is provided

Table 1: Rule refinement with a negative example

In Proceedings of the Sixth International Conference on Machine Learning and Applications (ICMLA'07)
Cincinnati, Ohio, December 13-15, 2007.

4. Experimental Results

The strategies presented in this paper are integrated in

the rule refinement module of Disciple, which was
evaluated in two courses at the US Army War College in
the past several years: “Military Applications of Artificial
Intelligence” (MAAI) and “Center of Gravity Analysis”
(COG) [5].

During the agent training experiments performed in the
“Military Applications of Artificial Intelligence” course,
20 high-ranking military officers (13 in 2006 and 7 in
2007) trained Disciple agents to perform intelligence
analysis tasks by systematically analyzing hypotheses
based on relevant pieces of evidence, and experienced its
use as a problem solver.

Some of the experts' assessments of the rule refinement
module from the MAAI experiments performed in 2006
and 2007 are presented in Figure 5. We can see an
improvement of the results in 2007, due to more strategies
offered to the subject matter experts and a more natural
interaction with the rule refinement tools.

The rule refinement module was also used by the
knowledge engineers and subject matter experts in the
initial development of the knowledge bases used in these
knowledge acquisition experiments. The final knowledge
base used in MAAI 2006 contained 318 reasoning rules,
140 concepts, 140 features, 260 instances, and 1400 facts.
The final knowledge base for MAAI 2007 contained 360
reasoning rules, 155 concepts, 145 features, 266
instances, and 1406 facts.

The rule refinement module was also used in the
development of the agent for the Center of Gravity
Analysis course taught at USAWC in Spring 2007 and in
the past several years. The most recent knowledge base

contains 1176 reasoning rules, 357 concepts, 205 features,
226 instances, and 732 facts.

These experiments showed that the rule refinement
methods can be used by the subject matter experts to
refine the rules from the agent’s knowledge base to
incorporate subtle distinctions in the application domain.

5. Related Research

A significant amount of work on knowledge-base

refinement has been done in Machine Learning under the
name of theory revision or theory refinement. Most often
the problem addressed is to revise the knowledge base of
a classification system to correctly classify a given set of
positive and negative examples. Most of these systems
correct propositional Horn-clause theories, by adding or
deleting rule antecedents, and by learning new rules or
deleting existing rules, to correctly classify the given set
of examples (KR-FOCL [6], EITHER [7], ODYSSEUS
[8], KRUST [9], MOBAL [10,11]).

The Defense Advanced Research Projects Agency
(DARPA) investigated the rapid development of large
knowledge bases by subject matter experts with no prior
knowledge engineering experience under the Rapid
Knowledge Formation (RKF) Program. Besides Disciple,
two other systems for acquiring and refining expert
problem solving knowledge were developed: SHAKEN
and KRAKEN [12].

The SHAKEN system incorporates advanced tools that
allow the subject matter experts to directly author and
modify problem solving rules [13] by creating a graphical
representation of a rule that can be editable by an expert
through specializing, adding concepts, unifying elements,

connecting elements through
relations [14].

KRAKEN, which is a Cyc-
based system [15] includes
“knowledge engineers power
tools” that can be used by
subject matter experts to
directly author concepts and
rules. Cyc’s team is also
investigating a new approach
which uses machine learning
techniques to automatically
generate rules from ground
facts [16]. After generation,
these rules are reviewed by the
subject matter expert and then
modified by a knowledge
engineer.

In the Disciple approach we
ask the subject matter experts
to do what they know best (i.e.
to solve specific problems and

0
1
2
3
4
5
6
7
8
9

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

0
1
2
3
4
5
6
7
8
9

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

It is easy to use
the Rule Refinement tools

I understand the role of
the refinement operations

0
1
2
3
4
5
6
7
8
9

10
11

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

It is easy to update the
components of an example

0
1
2
3
4
5
6
7
8
9

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

It is easy to specify the desired
refinement operation: Correct Reduction,
Incorrect Reduction, Modify Explanations

Figure 5: The experts’ assessments from the MAAI 2006 and 2007 experiments

2007

2006

2007

2006

2007

2006

2007

2006

2007

2006

2007

2006
2007

2006

2007

2006

In Proceedings of the Sixth International Conference on Machine Learning and Applications (ICMLA'07)
Cincinnati, Ohio, December 13-15, 2007.

to critique particular examples), while the agent learns
and refines rules. In contrast, SHAKEN and KRAKEN
attempt to facilitate direct rule authoring by the subject
matter experts.

Acknowledgements

This material is based on research sponsored by

several organizations, including the Air Force Research
Laboratory under agreement number FA8750-04-1-0257,
the Air Force Office of Scientific Research under grant
number F9550-07-1-0268, the National Science
Foundation under grant number 0610743 and the US
Army War College. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.
The views and conclusions contained therein are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the Air Force Research
Laboratory, Air Force Office of Scientific Research, the
National Science Foundation, the US Army War College,
or the U.S. Government.

References

[1] G. Tecuci. 1998. Building Intelligent Agents: An
Apprenticeship Multistrategy Learning Theory,
Methodology, Tool and Case Studies. London, England:
Academic Press.

[2] G. Tecuci, M. Boicu, C. Boicu, D. Marcu, B.
Stanescu, M. Barbulescu. 2005. The Disciple-RKF
Learning and Reasoning Agent. In Computational
Intelligence Journal (Special Issue on Learning to
Improve Reasoning), Vol. 21, No. 4, pp. 462-479.

[3] C. Boicu. 2006. An Integrated Approach to Rule
Refinement for Instructable Knowledge-Based Agents.
PhD Dissertation in Computer Science, Learning Agents
Center, Volgenau School of Information Technology and
Engineering, George Mason University, Fairfax, Virginia.

[4] C. Boicu, G. Tecuci, G. and M. Boicu. 2005. Rule
Refinement by Domain Experts in Complex Knowledge
Bases. In Proceedings of the Twentieth National
Conference of Artificial Intelligence (AAAI-2005). July
9-13, 2005, Pittsburgh, Pennsylvania.

[5] G. Tecuci, M. Boicu, D. Marcu, B. Stanescu, C.
Boicu, M. Barbulescu. 2004. Parallel Knowledge Base
Development by Subject Matter Experts. In Proceedings
of the 14th International Conference on Knowledge
Engineering and Knowledge Management (EKAW 2004).
Springer-Verlag.

[6] M. Pazzani and C. Brunk. 1991. Detecting and
correcting errors in rule-based systems: an integration of

empirical and explanation-based learning. Knowledge
Acquisition (3), pp. 157-173.

[7] R. J. Mooney and D. Ourston. 1994. A Multistrategy
Approach to Theory Refinement. In Machine Learning: A
Multistrategy Approach, Vol IV (eds. R.S. Michalski and
G. Tecuci), pp.141-164. Morgan Kaufman, San Mateo,
California.

[8] D. C. Wilkins. 1990. Knowledge base refinement as
improving an incorrect and incomplete domain theory. In
Machine Learning (eds. Y. Kodratoff and R. S.
Michalski), Vol. III, pp. 493–513. Morgan Kaufmann,
San Mateo, CA.

[9] S. Craw, R. Boswell, R. Rowe. 1997. Knowledge
Refinement to Debug and Maintain a Tablet Formulation
System. In Proceedings of the 9TH IEEE International
Conference on Tools with Artificial Intelligence, pp. 446–
453, IEEE Press.

[10] K. Morik, S. Wrobel, J. Kietz, and W. Emde. 1993.
Knowledge Acquisition and Machine Learning – Theory,
Methods and Applications. London: Academic Press.

[11] S. Wrobel. 1994. Concept Formation and Knowledge
Revision. Dordrecht, Netherlands: Kluwer Academic
Publishers.

[12] M. Pool, K. Murray, J. Fitzgerald, M. Mehrotra, R.
Schrag, J. Blythe, J. Kim, H. Chalupsky, P. Miraglia, T.
Russ, D. Schneider. 2003. Evaluating Expert-Authored
Rules for Military Reasoning. In Proceedings of the 2nd
International Conference on Knowledge Capture. ACM
Press, Florida.

[13] K. Barker, J. Blythe, G. Borchardt, V. Chaudhri, P.E.
Clark, P. Cohen, J. Fitzgerald, K. Forbus, Y. Gil, B. Katz,
J. Kim, G. King, S. Mishra, C. Morrison, K. Murray, C.
Otstott, B. Porter, R.C. Schrag, T. Uribe, J. Usher, P.Z.
Yeh. 2003. A Knowledge Acquisition Tool for Course of
Action Analysis. In Proceedings of the 15th Innovative
Applications of Artificial Intelligence Conference. AAAI
Press, Menlo Park, California.

[14] J. Thoméré, K. Barker, V. Chaudhri, P. Clark, M.
Eriksen, S. Mishra, B. Porter and A. Rodriguez. 2002. A
Web-Based Ontology Browsing and Editing System. In
Proceedings of the IAAI-02, pp. 927-934. Menlo Park,
California.

[15] D. Lenat. 1995. Cyc: A Large-Scale Investment in
Knowledge Infrastructure. In Communications of the
ACM, Vol. 38, no. 11.

[16] M. Witbrock, C. Matuszek, A. Brusseau, R.C.
Kahlert, C.B. Fraser, D. Lenat. 2005. Knowledge Begets
Knowledge: Steps towards Assisted Knowledge
Acquisition in Cyc. In Papers from the 2005 AAAI Spring
Symposium on Knowledge Collection from Volunteer
Contributors (KCVC), pp. 99-105. Stanford, California.

In Proceedings of the Sixth International Conference on Machine Learning and Applications (ICMLA'07)
Cincinnati, Ohio, December 13-15, 2007.

