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Abstract 

 
Our research addresses the issue of developing 

knowledge-based agents that capture and use the problem 
solving knowledge of subject matter experts from diverse 
application domains. This paper emphasizes the use of 
negative examples in agent learning by presenting several 
strategies for capturing expert’s knowledge when the 
agent fails to correctly solve a problem. These strategies 
have been implemented into the Disciple learning agent 
shell and used in complex application domains such as 
intelligence analysis, center of gravity determination, and 
emergency response planning. 

 
1. Introduction 

 
We address the development of knowledge-based 

agents that can rapidly capture and use the problem 
solving knowledge of subject matter experts. Our 
approach is to develop a learning and problem solving 
agent, called Disciple, which can be directly taught by a 
subject matter expert by giving the agent specific problem 
solving examples and explanations, and correcting its 
behavior when it attempts to solve new problems [1]. We 
have developed applications in several domains, including 
intelligence analysis, center of gravity determination, 
emergency response planning, course of action critiquing, 
and PhD advisor selection.  

In this paper we will consider the intelligence analysis 
domain. For this domain, we have developed an agent to 
assist an intelligence analyst in assessing the likelihood of 
various hypotheses, such as whether a specific terrorist 
group has nuclear weapons. To solve this problem, we 
have developed a systematic approach to hypothesis and 
source analysis that is both natural for an analyst and 
appropriate for an automated agent. This approach is 
based on Disciple’s task reduction reasoning paradigm 
[2]. To illustrate it, let us consider that the analyst 
specifies an initial intelligence analysis task to solve (e.g. 
“Assess whether Terrorist_Group_T has nuclear 
weapons”). This complex task is successively reduced to 
simpler tasks, guided by questions and answers, until 
elementary solutions are reached. Then these solutions are 
successively composed, until the solution to the initial 
task is found, as shown in Figure 1. Generally such a 

reasoning tree contains thousands of reasoning steps. At 
the top of the tree, the initial hypothesis is reduced to 
simpler hypotheses, until some elementary hypotheses are 
reached. Then potentially relevant pieces of evidence are 
identified and analyzed to determine to what extent they 
favor or disfavor the corresponding hypotheses. The 
analysis takes into account the chains of custody of the 
pieces of evidence, as well as the competence and the 
credibility of the corresponding primary and intermediary 
sources. 

Each task reduction step from the reasoning tree is 
obtained by applying reasoning rules from the agent’s 
knowledge base. These rules have applicability conditions 
expressed with the terms from the agent’s object 
ontology, which is a hierarchical representation of the 
objects and features from the application domain. 

An example of a task reduction rule is shown in Figure 
2. This rule has an IF-THEN structure containing an 
informal section (shown in the top part of Figure 2) which 
preserves the expert's natural language and is used in the 
agent-user communication. The rule also contains a 
formal section (shown in the bottom part of Figure 2) 
which is used in the internal reasoning of the agent. This 
particular rule has a main applicability condition (which 
has to be satisfied by some instances from the object 
ontology, in order for the rule to be applicable) and two 
except-when conditions (which should not be satisfied by 
any instance in the object ontology).  
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Figure 1: Task reduction paradigm
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Moreover, this rule is only partially learned and each 
condition is represented by two plausible bounds, a 
plausible upper bound (PUB) condition, and a plausible 
lower bound (PLB) condition. During further learning, the 
rule may be refined with additional except-when 
conditions, and the two bounds of each condition will 
converge toward one another [2]. 

One characteristic aspect of our approach is that these 
rules are learned by the agent through a mixed-initiative 
interaction, based on specific examples of task reduction 
steps and their explanations provided by the expert. For 
instance, when the agent does not know how to solve a 
task, the expert may provide one or more reduction steps. 
From these steps and their explanations, the agent will 
learn general rules. These rules will be used in future 
problem solving situations, when either their PLB 
conditions or their PUB conditions are satisfied. This will 
allow the agent to collaborate with the expert in solving 
new problems, and to refine the rules based on the 
correctness of the reductions generated by them (where 
the correct reductions are used as positive examples of the 
rules, and incorrect ones as negative examples) [3]. In this 
paper we will concentrate on the problem of using the 
negative examples in the rule refinement process.  

Section 2 will present the mixed-initiative problem 
solving process. Section 3 will describe various rule 
refinement strategies based on negative examples, using 
an illustration from the intelligence analysis domain. 
Section 4 will present experimental results and Section 5 
will conclude with a discussion of related research.  
 
2. Mixed-Initiative Problem Solving 

 
During the mixed-initiative problem solving process, 

the expert and the agent solve together a problem. Initially 
the agent has the initiative, searches for applicable rules in 
its knowledge base, and generates plausible solutions of 
the problem. Next, the expert may take the initiative to 
critique the solutions proposed by the agent. We will 
distinguish between the following situations: 

1) The expert accepts a reasoning step performed by 
the agent, using a given problem solving rule. a) If the 
expert does not provide any additional explanation, then 
the agent will generalize the applicability condition of the 
corresponding rule in order to cover this example and it 
will keep the confirmed reasoning step as a positive 
example for this rule. b) If the expert provides more 

explanations for this reasoning step, then 
these explanations will be used by the agent to 
refine the main applicability condition of this 
rule. The expert may even accept an entire 
reasoning tree, in which case all the rules used 
in that tree will be refined with their 
corresponding instantiations used as positive 
examples. 

2) The expert rejects a reasoning step 
performed by the agent. a) If the expert 
provides an explanation why it is incorrect, 
then the agent will keep this reasoning step as 
a negative example and the explanation will 
be used by the agent to specialize the rule to 
no longer cover this negative example. b) If 
the expert does not provide any explanation, 
then the agent will keep this reasoning step as 
a negative exception, which will need to be 
analyzed later by the expert during the 
exception-based learning and refinement 
process [4].   

3) The expert may also extend the 
reasoning tree with new steps that solve the 
current problem. Then, the expert will help 
the agent to understand these reasoning steps, 
based on which the agent will learn general 
problem solving rules.  

During this process, the ontology may also 
be extended with new elements in order to 
allow the refinement of the rules to correctly 
cover the generated positive examples and to 
not cover the negative examples.   

 
 

Figure 2: A task reduction rule

MAIN CONDITION
PUB Condition
?O1 is actor
?O2 is nuclear_state

IF
Assess whether there are states willing to sell nuclear weapons to ?O1

THEN
Assess whether ?O2 is willing to sell nuclear weapons to ?O1

Question: Which is a nuclear state that is not an enemy of ?O1 and does 
not oppose the proliferation of nuclear weapons?
Answer:   ?O2

Positive Example:  (?O1=Terrorist_Group_T ?O2=State_A)

PLB Condition
?O1 is terrorist_group
?O2 is nuclear_state  

Negative Example: (?O1=Terrorist_Group_T ?O2=State_B)

EXCEPT-WHEN CONDITION
PUB Condition
?O1 is actor
?O2 is actor   

perceives_as_enemy ?O1         

PLB Condition
?O1 is terrorist_group
?O2 is nuclear_state

perceives_as_enemy ?O1

EXCEPT-WHEN CONDITION
PUB Condition
?O1 is actor
?O2 is actor   

degree_of_opposition_to_nuclear
weapons_proliferation ?S1 

?S1 is [very-low, very high]   

PLB Condition
?O1 is terrorist_group
?O2 is nuclear_state

degree_of_opposition_to_nuclear
weapons_proliferation ?S1 

?S1 is [very-high, very-high]    

Negative Example: (?O1=Terrorist_Group_T ?O2=State_C)
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3. Rule Refinement Strategies Based on 
Negative Examples 

 
When the agent generates a reasoning step which is 

rejected by the expert, the agent must refine the condition 
of the rule, to no longer cover this negative example. 
However, there are several strategies to modify the rule’s 
condition to no longer cover this incorrect reduction. 1) 
One strategy is to specialize the main condition to no 
longer cover the example. 2) Another strategy is to 
generalize one of the rule’s except-when conditions to 
cover the example. 3) Yet another strategy is to add a new 
except-when condition to the rule.  

There are many difficulties in the refinement of a rule 
based on a negative example. One difficulty is the risk of 
over specialization of the rule. To avoid this risk we use 
except-when plausible version space conditions to better 
approximate the knowledge to be learned from the 
negative examples. These conditions have a 
conservatively generated plausible lower bound, covering 
only the examples that are very similar with the negative 
examples rejected by the expert. When a new example is 
rejected, the lower bound is minimally generalized to 
cover also this new example. This condition has also an 
upper bound, which is the maximal generalization of the 
rejected examples. However, this bound will probably 
cover also correct examples. In order to allow the 
refinement of existing except-when conditions of a 
plausible version space rule, the problem solver needed to 
be modified to allow the generation of some examples 
that are covered by the upper bound of except-when 
conditions. Disciple uses these examples to further refine 
the rules.  

Another difficulty of rule refinement based on negative 
examples is the risk of proliferation of unrefined except-
when conditions. This means that for each new incorrect 
example the user will learn a new except-when condition 
instead of selecting other refinement strategy (i.e. 
specializing the main condition or an except-when 
condition). In order to avoid this, the agent will prefer the 
strategies to refine existing conditions and if those are not 
acceptable, it will learn a new except-when condition. 

To illustrate the rule refinement process, let us 
consider that the expert provides the reduction step shown 
in Figure 3, for assessing whether there are states willing 

to sell nuclear weapons to a specific terrorist group T. 
Based on this initial example and its explanation 
(“State_A is nuclear_state”), the agent learns the general 
task reduction rule shown in Figure 4.  

The agent applies this learned rule in problem solving 
and generates other task reduction steps to be analyzed by 
the expert. The expert notices a solution where a state 
(State_B) which is an enemy of Terrorist_Group_T, 
would sell weapons to it, and rejects it as incorrect. This 
initiates an explanation generation process in which the 
expert collaborates with the agent to justify why this 
example is incorrect: “State_B perceives as enemy 
Terrorist_Group_T”, therefore it would not be willing to 
sell nuclear weapons to this group. Based on this 
explanation, the agent generates a plausible version space 
except-when condition and adds it to the rule. The 
addition of the except-when condition specializes both the 
lower and upper bounds of the rule’s overall applicability 
condition.  

The agent re-applies the refined rule. This time the 
expert notices a solution where a state (State_C) that is 
highly opposed to nuclear proliferation would sell nuclear 
weapons to Terrorist_Group_T. This reduction step is 
rejected by the expert and the agent generates a new 
except-when condition and adds it to the rule. The rule 
refined with these except-when conditions is shown in 
Figure 2.  

Other types of failure explanations may lead to 
different modifications of the rule. For instance, another 
strategy is to find an additional feature of the positive 
examples of the rule which is not a feature of the current 
negative example. This feature would then be added to the 
corresponding object from the main condition (both in the 
upper bound and in the lower bound).  

Additional negative examples may lead to 
specializations of the main condition, or to generalizations 
of the lower bounds of existing except-when conditions, 
or to the learning of new except-when conditions.  

The rule refinement method with a negative example is 
presented in more details in Table 1. As mentioned 

Assess whether State_A is willing to sell 
nuclear weapons to Terrorist_Group_T

Assess whether there are states willing to sell 
nuclear weapons to Terrorist_Group_T

Question: Which is a nuclear state ?

Answer: State_A

We need to: 

THEN we need to:

Figure 3: An example of a task reduction step

MAIN CONDITION
PUB Condition
?O1 is actor
?O2 is nuclear_state 

IF
Assess whether there are states willing to sell nuclear 
weapons to ?O1

THEN
Assess whether ?O2 is willing to sell nuclear weapons to ?O1

Question: Which is a nuclear state ?
Answer:   ?O2

Positive Example: (?O1=Terrorist_Group_T ?O2=State_A)

PLB Condition
?O1 is terrorist_group
?O2 is nuclear_state  

Figure 4: The rule learned from the example in Figure 3
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before, there are situations when several refining 
strategies may be applied. In the case of an example that 
is covered by the lower bound of the rule’s main 
condition (without being covered by any lower bound of 
the except-when conditions) the agent will try first to 
elicit an explanation from the expert that would specialize 
the lower bound of the main condition, to no longer cover 
the negative example. If such a failure explanation is not 
found, the agent will try to elicit another explanation of 
why the example is incorrect, based on which it will learn 
an except-when condition.  

Similarly, for a negative example that is covered by the 
upper bound of the rule’s main condition (without being 

covered by the lower bound of the main condition and by 
the lower bound of any except-when condition) the agent 
will try first to specialize the upper bound of the main 
condition, to no longer cover the negative example. If 
such a specialization is not acceptable, the agent will try 
to elicit another explanation of why the example is 
incorrect, based on which it will learn a new except-when 
condition. In this case, the agent will also test whether this 
new except-when condition is more general than an 
existing except-when condition from the rule, in which 
case it will apply a lazy refinement method [3]. The agent 
will create a new rule in which the newly created except-
when condition will replace the existing one which is less 

general, postponing the decision on 
whether to keep two separate rules 
or just the new version, until more 
examples are analyzed by the 
expert. 

All the above strategies refine 
the formal applicability condition 
of the rule (i.e. main condition, 
except-when condition). This, 
sometimes, requires also the 
refinement of the question and its 
answer from the informal part of 
the rule (see the top part of the rule 
in Figure 2), to better express in 
natural language the meaning of 
the formal condition. For such 
cases, we have developed a method 
which allows the expert to modify 
the informal description of the rule, 
by modifying a specific example of 
that rule. For instance, the expert 
may modify the question of the 
initial positive example from 
“Which is a nuclear state?” to 
“Which is a nuclear state that is not 
an enemy of Terrorist_Group_T 
and does not oppose the 
proliferation of nuclear weapons?” 
This updated question would 
incorporate the knowledge from 
the except-when conditions of the 
refined rule shown in Figure 2. 

The modifications performed on 
the example are generalized and 
this generalization is used to 
update the informal structure of the 
rule. If the agent cannot decide 
whether these modifications are 
applicable also for previous rules 
examples, then a lazy rule 
refinement strategy is invoked [3]. 

 

Given: 
• R – a reasoning rule  
• E – a reasoning step judged by the expert as a negative example 

Refine rule R to no longer cover the negative example E: 

1. if E is covered by the upper bound of R’s main condition and there is an except 
when condition’s lower bound that covers E then 
     keep E as a negative example for the main condition and as a positive    
     example for the except-when condition 
     return 

2. for each except-when condition EW of the rule R do 
     if E is covered by the upper bound of R’s main condition and  
         E is covered by EW upper bound and 
         E is not covered by EW lower bound then 
              attempt to generalize EW lower bound to cover E 
              if any generalization performed then 
                   keep E as a negative example for the main condition and as a  
                   positive example for the except-when condition 
                   return 

3. if E is covered by the lower bound of R’s main condition and E is not covered by 
any of the except-when condition’s lower bounds then 
     try Main-Condition-Lower-Bound-Specialization (R, E) 
    if success then keep E as a negative example and return 
    else continue with step 5 

4. if E is covered by the upper bound of R’s main condition but not its lower 
bound, and E is not covered by any except-when condition’s lower bound then 
     try Main-Condition-Upper-Bound-Specialization (R, E) 
    if success then keep E as a negative example and return 
    else continue with step 5 

5. ask for an explanation why the example E is wrong  
if an explanation is provided then 
     learn an except-when condition EW-new corresponding to this explanation 
    if there is another except-when condition EW such that EW-new is more 
     general than EW  
          create chain with a new rule obtained by replacing EW with EW-new 
          return 
     else add the new EW-new condition to rule R 

 else keep E as a negative exception  //if no explanation is provided  

Table 1: Rule refinement with a negative example 
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4. Experimental Results  
 
The strategies presented in this paper are integrated in 

the rule refinement module of Disciple, which was 
evaluated in two courses at the US Army War College in 
the past several years: “Military Applications of Artificial 
Intelligence” (MAAI) and “Center of Gravity Analysis” 
(COG) [5].  

During the agent training experiments performed in the 
“Military Applications of Artificial Intelligence” course, 
20 high-ranking military officers (13 in 2006 and 7 in 
2007) trained Disciple agents to perform intelligence 
analysis tasks by systematically analyzing hypotheses 
based on relevant pieces of evidence, and experienced its 
use as a problem solver.  

Some of the experts' assessments of the rule refinement 
module from the MAAI experiments performed in 2006 
and 2007 are presented in Figure 5. We can see an 
improvement of the results in 2007, due to more strategies 
offered to the subject matter experts and a more natural 
interaction with the rule refinement tools. 

The rule refinement module was also used by the 
knowledge engineers and subject matter experts in the 
initial development of the knowledge bases used in these 
knowledge acquisition experiments. The final knowledge 
base used in MAAI 2006 contained 318 reasoning rules, 
140 concepts, 140 features, 260 instances, and 1400 facts. 
The final knowledge base for MAAI 2007 contained 360 
reasoning rules, 155 concepts, 145 features, 266 
instances, and 1406 facts. 

The rule refinement module was also used in the 
development of the agent for the Center of Gravity 
Analysis course taught at USAWC in Spring 2007 and in 
the past several years. The most recent knowledge base 

contains 1176 reasoning rules, 357 concepts, 205 features, 
226 instances, and 732 facts.  

These experiments showed that the rule refinement 
methods can be used by the subject matter experts to 
refine the rules from the agent’s knowledge base to 
incorporate subtle distinctions in the application domain.  

 
5. Related Research  

 
A significant amount of work on knowledge-base 

refinement has been done in Machine Learning under the 
name of theory revision or theory refinement. Most often 
the problem addressed is to revise the knowledge base of 
a classification system to correctly classify a given set of 
positive and negative examples. Most of these systems 
correct propositional Horn-clause theories, by adding or 
deleting rule antecedents, and by learning new rules or 
deleting existing rules, to correctly classify the given set 
of examples (KR-FOCL [6], EITHER [7], ODYSSEUS 
[8], KRUST [9], MOBAL [10,11]).  

The Defense Advanced Research Projects Agency 
(DARPA) investigated the rapid development of large 
knowledge bases by subject matter experts with no prior 
knowledge engineering experience under the Rapid 
Knowledge Formation (RKF) Program. Besides Disciple, 
two other systems for acquiring and refining expert 
problem solving knowledge were developed: SHAKEN 
and KRAKEN [12]. 

The SHAKEN system incorporates advanced tools that 
allow the subject matter experts to directly author and 
modify problem solving rules [13] by creating a graphical 
representation of a rule that can be editable by an expert 
through specializing, adding concepts, unifying elements, 

connecting elements through 
relations [14].  

KRAKEN, which is a Cyc-
based system [15] includes 
“knowledge engineers power 
tools” that can be used by 
subject matter experts to 
directly author concepts and 
rules. Cyc’s team is also 
investigating a new approach 
which uses machine learning 
techniques to automatically 
generate rules from ground 
facts [16]. After generation, 
these rules are reviewed by the 
subject matter expert and then 
modified by a knowledge 
engineer. 

In the Disciple approach we 
ask the subject matter experts 
to do what they know best (i.e. 
to solve specific problems and 
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to critique particular examples), while the agent learns 
and refines rules. In contrast, SHAKEN and KRAKEN 
attempt to facilitate direct rule authoring by the subject 
matter experts.  
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