
Abstract 
In this paper, we present experimental results 
that demonstrate the effectiveness of a mixed-
initiative component, which we call a Coware 
component, that is designed to support aware-
ness and planning in a collaborative domain.  
The Coware component embodies a design 
methodology for supporting collaboration in 
groupware that leverages work users do to stay 
coordinated to drive an intent inferencing proce-
dure.   Intent inference is in turn used to drive 
the mixed initiative Coware component, which 
provides users with high individual payoff via 
automatic plan generation, and supports mutual 
intent awareness. 
We will provide a summary account of our intent 
inference framework, which uses: 1) information 
collected via Coordinating Representations, 
which are interface components designed to 
structure and facilitate the exchange of coordina-
tion specific information, and; 2) a probabilistic 
task-domain model represented as a Bayesian 
Belief Network.  The design of the Coware com-
ponent is discussed in depth, and an analysis of 
empirical results from usage studies is presented.  

1 Introduction 
When networked computers are interposed between peo-
ple for tasks that require coordination, communication 
channels that typically support the unfolding joint activ-
ity become severely constrained, or vanish completely.  
Visual and contextual queues, and even direct voice chat 
may not be available.  Many approaches have been taken 
to building groupware systems that attempt to provide 
means for users to overcome these deficits.  Early tech-
niques, which had to contend with more severe techno-

logical constraints (limited bandwidth and processing 
power), attempted to provide external structure (turn-
taking, speech-act commitment networks [Flores, et. al.]) 
to replace the need for real-time information of others’ 
activities.  In general, these approaches were not success-
ful, partly because collaborative activity is typically more 
fluid and dynamic than enforced external structure can 
allow for.  More recently, several [Dourish and Belotti, 
1992, Gutwin, et. al. 1996] have turned their attention to 
replacing the information channels that are missing in 
groupware systems; in general, these approaches employ 
interface components that support awareness.  While 
these approaches have met with far more success, they 
have typically been limited to reporting information 
about location (in a shared workspace) and activities of 
other users at some level of abstraction. This is not, how-
ever, always the right kind of information, nor is it al-
ways feasible to provide enough detail to support the 
kind of reasoning necessary for people to coordinate ef-
fectively.  More specifically, the ability to anticipate the 
actions of others, which is crucial for effective coordina-
tion, is not well supported.  
One obstacle to providing collaborators with direct sup-
port for anticipatory reasoning is that it is difficult to 
elicit appropriate information about intent from users.  
[Dourish and Bellotti, 1992]  explain this difficulty as a 
general problem with “active, informational” awareness 
mechanisms, which require users to report information 
for the benefit of the group.  The three problems they 
identify are; 1) there is an apparent imbalance between 
cost and payoff for the individual; 2) information pro-
vided by the individual may not take into account the 
context of the recipients, and may not be timely or rele-
vant; 3) recipients of this information incur cost in de-
termining its relevance.   
To address the problem of eliciting intent, we apply an 
approach called Non-Autonomous AI [Alterman, 2000], 
which allows us to perform imperfect intent inference by 
using coordination work that users must do anyways.  
Intent inference is used to drive a mixed-initiative 
groupware component, called Coware (Collaborative 
Awareness), that can offer semi-automatic planning as 
well as a means for users to maintain awareness of each 
others intentions.  
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Our approach can be summarized as follows: 
• Users must exchange information to stay coordinated 

in joint activities. 

• Collaboration via networked computers makes the ex-
change and maintenance of some classes of this in-
formation difficult. 

• Interface components called Coordinating Representa-
tions (CRs) [Alterman, et. al. 2001b] may be intro-
duced to support the information requirements for dif-
ficult coordination tasks.  

• Data collected from the users through these CRs is 
well suited to support a mixed initiative intent infer-
encing procedure that can in turn be used to drive 
automatic planning. 

Coware provides users with a list of possible intentions, 
and selecting from this list allows the system to auto-
matically generate relevant plans for users.  In making 
such selections, users implicitly confirm their intentions 
in a component that is visible to all users.  Thus, we ex-
pect that Coware can ultimately be used to overcome the 
problems identified in [Dourish and Belotti, 1992].  We 
revisit this in the discussion section below. 
Our approach is generally applicable to collaborative 
applications.  First, we employ discourse analysis tech-
niques [Afeinman and Alterman, 2003; Cohen, 1997] to 
identify coordination problems in an existing collabora-
tive system.  Coordinating Representations [3] that are 
suggested by an initial analysis of practice with the exist-
ing system are designed and integrated into the system.  
CRs typically lend structure to information that is com-
municated by users to support coordination. Our intent 
inferencing technique utilizes Bayesian Belief Networks 
[Pearl, 1988; Jenson, 1996] to convert this type of infor-
mation, along with a task-domain model, into predictions 
about the intended goals of the users.  Finally, we de-
velop Coware components, a class of mixed-initiative 
Coordinating Representations, which use the output of 
the intent inferencing system to provide users with 
awareness of others’ intents.  A key feature in the design 
of these components is that they do not require perfect 
intent inferencing to provide users with a high degree of 
utility. 
In this paper we will focus on an empirical evaluation of 
an implemented system that employs the methodology 
described above.  We will show that the evidence col-
lected supports the non-autonomous claim; that we can 
leverage user work to make intent inference practical and 
useful.  Specifically, our evidence shows that; 1) Users 
use Coordinating Representations; 2) Information from 
Coordinating Representations can be leveraged to pro-
vide good predictions about user intentions; 3) Users use 
these predictions during a problem-solving session to 
support their activity. 
In following sections, we describe our domain, and detail 
the non-autonomous process as it has been employed 
here.  We will then describe the design of the intent in-

ferencing algorithm and the Coware component.  In the 
final sections, we provide detail about our user study and 
present evidence that was collected.  We conclude with a  
discussion of the results. 

2 The Vesselworld Domain 

  The Vesselworld system, which was demonstrated at 
CSCW 2000, is a collaborative system we have built for 
the purpose of developing a design methodology and ad-
aptation techniques for collaborative systems.  Figure 1 is 
a snapshot of the main window (the Control Center) in 
Vesselworld for one of the ship captains. 
In Vesselworld, three participants collaborate on remote 
workstations to remove barrels of toxic waste from a har-
bor.  Each participant is the captain of a ship, and their 
joint goal is to remove all of the barrels from the harbor 
without spilling any toxic waste. The users are scored by 
a function that takes into account the time it takes to re-
move all of the waste, the number of barrels cleared, the 
number of errors made, and the difficulty of the problem. 
Each ship has geographically limited view of the harbor, 
and thus ships in different locations will have different 
directly observable domain information. There are vary-
ing types and sizes of toxic waste barrels, which entail 
different coordination strategies that involve more than 
one of the actors.  Each ship has some unique capabili-
ties, which determine the type of toxic waste it is able to 
remove from the harbor. 
The progression of a Vesselworld session is turn based, 
thus every user must submit a step to be executed by the 
server before the server can evaluate executions and up-
date the world on each client screen. Users may plan any 
number of steps in advance, although any plan steps that 
involve objects are restricted to those objects that are 
currently visible, and only one step can be submitted to 
the server at a time.  Communication may occur at any 
point, but all communication must occur through a text 
based chat tool or one of the special purpose CRs. 
  Roughly three hundred hours of data have been col-
lected with the Vesselworld system, and we have devel-

Figure 1 The Vesselworld Control Center 



oped a suite of domain independent tools for analyzing 
this data.  In data obtained from experiments with an ini-
tial version of the system that offered only the chat tool 
for communication, we identified several classes of coor-
dination problems [Alterman, et. al., 2001a; 2001b].  In 
the next section, we describe how non-autonomous AI 
was employed to alleviate some of these errors.  

3 Non-Autonomous AI 
Introducing AI technology into the interface is rarely a 
matter of simply plugging a module into an obvious 
socket.  The appropriate contextual information that is 
necessary to support any technique must be identified, 
converted into a form usable to the technique under con-
sideration, and in most cases, there’s an additional un-
specified something that gets thrown into the mix to 
make everything work.  This argument is presented in 
detail in [Alterman, 2000]. 
Collaborative applications offer us an excellent opportu-
nity to employ various AI techniques, because users must 
exchange certain types of domain specific information in 
order to stay coordinated.  Our insight is that it is possi-
ble to both reduce the amount of work that users must do 
to communicate and maintain some types of coordination 
information, and at the same time convert this work into 
data that is easily used by general AI techniques [Alter-
man, 2001a]. To do this, we introduce a class of interface 
components that are called Coordinating Representations, 
which offer convenient and useful structure that users 
may take advantage of.    

3.1 Coordinating Representations 
Coordinating Representations (CRs) are artifacts that are 
designed to explicitly support the communication and 
management of specific types information that are neces-
sary for actors to stay coordinated.  The information in 
CRs may be entirely user-authored, or  (as in the case of 
Coware) may be in part generated by the system.  
CRs that are user-authored generally offer the user sev-
eral structured or semi-structured fields, such as drop 
down lists and fields that are drag targets for other ob-
jects in the interface.  If appropriately designed, this type 
of interface reduces the amount of work users need to do 
to communicate the type of information supported by the 
CR.  The structured data that is generated during use is 
readily accessible to general AI algorithms. 
One type of CR that was developed for Vesselworld was 
the Object List.  In empirical studies the Object List was 
heavily used and led to reduced communication via the 
chat tool, and significantly improved performance in the 
domain task [Alterman, 2001a]. 

3.2 Object List 
The Object List is shown in Figure 2.  It is an external 
representation that structures and distributes memory for 
information about shared domain objects.  The Object 
List replicates the same data in tabular format for each 

user, and modifications to data made by one user are dis-
played globally. Each row of user-entered data in the 
Object List contains several fields of information, includ-
ing a user assigned name, the status, and the location of 

the associated object. A free text field is also provided 
for each entry so that any other relevant information may 
be communicated.  Icons representing objects with valid 
locations may be displayed in the Control Center inter-
face, to assist users in mapping items in the list to objects 
in the domain. 
Usage of the Object List generates tagged information 
about the perceived state of the world, and Vesselworld 
logs this along with other usage data.  In all experiments, 
the Object List was heavily used, and the majority of us-
ers enjoyed using it [Alterman, 2001a].  This information 
provides us with both a dynamic representation of the 
user-perceived domain state as well as a set of references 
users employ during chat to discuss plans and goals con-
cerning objects (this is not enforced, but users generally 
use the names entered into the Object List to refer to ob-
jects in chat).  As this data is entirely user constructed, it 
is exceptionally well tuned to reasoning about intention 
in the space of user awareness. In the following section 
we describe how this data can be harnessed to do intent 
recognition that achieves better performance than would 
otherwise be possible.  

3.3 Intent Inference 
Our approach to intent inference uses the coordination 
work users must do to generate more accurate intent in-
ference than would otherwise be possible.  The Object 
List CR provides two readily available pieces of informa-
tion that we can use in our intent recognition system.  
First, the Object List provides a list of active user refer-
ences to objects in the domain, and these references are 
often used in chat to discuss plans for objects.  Informa-
tion about the domain as the users perceive it is also pro-
vided, including: where each object is; what type of 
equipment it requires, and; and how large each object is 
(and consequently its coordination requirements).  Our 

Figure 2 The Object List 



goal is to provide accurate predictions about the toxic 
waste the users intend to address next in plan execution. 
In preliminary studies, references in chat to objects in the 
domain were tested as predictors of plans involving those 
objects, without including the domain information from 
the Object List.  We found chat references to targets were 
good predictors of target plans in the five minutes pre-
ceding plan execution, especially where the target waste 
involved significant coordination.  However, many refer-
ences occurred in general throughout the logs, leading to 
very high false prediction rates.  One possible approach 
to reducing the false prediction rate would have been to 
do a semantic analysis of the chat to determine which 
references were the objects of planning conversation.  
However, the additional information that was pre-tagged 
upon its entry into the object list was sufficient to drive 
task-domain model.  In order to combine both reference 
and domain information into a predictive model, a Bayes-
ian Belief Network (BN) was used. 

3.4 The Vesselworld Belief Network  
To perform intent inference, we use a BN that generates a 
likelihood estimate for every possible agent-waste-
operator tuple, where wastes are taken directly from the 
Object List, and operators come from a set of high-level 
goals we have defined. We are only concerned with rela-
tive likelihood estimates, and not absolute probabilities 
of each goal, and we make the assumption that goals can 
be evaluated independently of each other.  
Figure 3 portrays a slight simplification (two interior 
nodes and nodes for the tug operator have been omitted 
to simplify the diagram) of the Belief Network that is 
currently being used in Vesselworld. Data is accumulated 

from the Object List, chat transcript, and plans, and 
posted to the unshaded nodes in the network.  The inte-
rior nodes (shaded) are incorporated to reduce the total 
number of conditional probabilities entries required by 
the model. Nodes are classified into three broad catego-
ries to serve as general guidelines for building BNs in 
other domains that employ Coordinating Representations.  
• Coordination Information: These nodes represent 

variables that are specific to the type of Coordinating 
Representation used.  

• State Information: Information regarding the current 
state that determines the possible goals in the do-
main.  

• Domain heuristics: These are heuristics that are not 
explicitly captured in a domain model, yet are pow-
erful predictors of intent. 

Within Vesselworld, these categories are instantiated as 
follows. 
The ``Coordination Information'' nodes reflect a judg-
ment as to how much a reference to a waste (taken di-
rectly from the Object List) that has appeared recently in 
chat influences the likelihood it will be lifted next.  As 
co-referencing activities are pervasive in collaboration 
[Clark and Wilkes-Gibbs, 1990], we expect that other 
collaborative domains would benefit from CRs that pro-
vide similar referential information.  
The “State nodes” reflect information about the state, 
such as whether the type of equipment is is appropriate, 
the size of the waste (which determines how many actors 
must be involved with the waste), and whether the agent 
is holding something. Some of this information (equip-
ment and size) is derived from the directly from the Ob-
ject List.   

Figure 3 Simplified version of the Vesselworld Belief Network 



The domain specific heuristics are heading and prox-
imity, which may be derived from the positional informa-
tion of objects in the Object List, and planning informa-
tion from the users.  The output of the network is a like-
lihood that a goal will be next. The “Agent State” node 
functions to switch between relevant portions of a net-
work, so that either a “LOAD” or “LIFT” goal will be 
returned depending on whether the agent is currently 
holding a waste.  The output is passed to the CoWare 
component described in the following section. 

4 Coware 
The Coware component was designed with two primary 
goals in mind: 

1. It should not be intrusive or burdensome; users 
should use it because they want to. 

2. It should be directly useful to the individual. 

3. It should provide collaborators with awareness of 
other’s future plans and goals.  

Thus, Coware is implemented as a passive, shared com-
ponent.  It is made useful by offering users automatically 
generated plans in exchange for a selection from a list of 
candidate intentions provided by the intent inferencing 
system.  In selecting individual intentions, users commu-
nicate their current intentions to each other through the 
Coware interface. 
Figure 4 is a screenshot of the Coware component.  The 
system makes predictions about each of the participants’ 
current plan.  Each participant has the option to confirm 
one of five possible goals that the system has predicted 
they are working on. A user can only select a goal from 
their column.  When a goal is confirmed, it is copied into 
the top row, which displays all users currently confirmed 
goals.  This is the primary source of awareness informa-
tion in the Coware component. 

After a goal is selected, the user is provided an option to 
have the system automatically generate a plan for that 
goal.  In cases where the goal involves multiple actors, 
the other actors are invited to join the plan.  If all invited 
actors do not accept the invitation, a plan is not gener-
ated. 
In summary, Coware uses the intent inferencing engine to 
significantly reduce the space of possible plans to a man-
ageable set, and users will use the system because it sim-
plifies plan generation.  As a by-product of user interac-
tion with Coware, intent information is shared with all 
users. 
In the following section, we present the results of our 
user studies with the Coware component. 

5  Empirical Studies 
To evaluate they the effectiveness of Coware, we per-
formed a 40 hour study with four groups of three people.  
The players were members of the Brandeis University 
community (including non-students). Each group was 
trained together for two hours in use of the system, and 
then solved randomly chosen Vesselworld problems for 
approximately ten hours. To alleviate fatigue concerns, 
the experiment was split into four three-hour sessions. 
Subjects were asked to fill out exit surveys where they 
could give feedback about their experience with the sys-
tem and the coordination issues arising in their group.  
The participants were divided into two populations of 
two groups each.  One was tested for 20 hours on the 
system without the Coware component.  The other was 
tested on the system including the Coware component. 
Our analysis seeks to answer the following questions:  

1. Was Coware used?  

2. Did it improve performance?  

3. Did it reduce effort?  

4. Did Coware improve intent awareness? 
In the following, data is presented for the last 5 hours of 
play time for each group, by which time performance 
with the system had stabilized.    
We show that Coware was used, that it improved per-
formance by reducing errors, and reduced user effort dur-
ing plan execution.   In so doing, we demonstrate support 
for our claim that Coordinating Representations may be 
used to collect data that can be harnessed to drive an ef-
fective intent inference system. 

5.1 Was Coware used? 
All groups used Coware to generate plans within the sys-
tem. Table 1 shows usage statistics for the Coware com-
ponent, both as rate of activity and proportion of total 
planning activity. Our evidence show that system predic-
tions were confirmed, and furthermore, plans were fre-
quently requested, accepted and executed.      
Our data shows that a confirmation was made by a user 
roughly every minute and a half during a game (games 
last anywhere from 45 min. to two hours). Confirmation 

Figure 4 The Coware component 



frequency takes into account total clock time of each ses-
sion to provide the average elapsed time between confir-
mations (when a user clicked on a prediction).  
Once confirmations are made, a plan can be requested for 
that confirmation any number of times.  The second col-
umn shows that there were at least as many requests as 
confirmations (though not necessarily a plan request for 
each confirmation), and that multiple requests were occa-
sionally made for a confirmation.   
After a plan is requested, it may only be used once (it is 
cleared from the users window after accepted). The third 
column shows that roughly 71% of the plans requested 
were accepted, and the final column shows that 83% of 
the plans accepted were actually executed to completion; 
that is, every step in the generated plan was submitted to 
the server. 
In the second part of the table, we provide data that dem-
onstrates a significant proportion of planning work was 
offloaded to Coware. The first column (Coware Steps) 
shows that nearly a quarter of all plan steps submitted to 
the server (where an average game contains about 380 
total submitted individual steps) came from the Coware 
component.   
The second column shows that 43% of the goals accom-
plished by the cranes (where a crane’s goal is one of 

“Lift”, “Load”, “Joint Load”, or “Joint Lift”) that could 
have been produced by the Coware component, were. 
This number could not be calculated for the tug operator, 
as tug’s plans do not have readily distinguished goals 
(e.g. a plan for the tug may consist of any number of 
moves between two arbitrary locations at any time). 

5.2 Did Coware improve performance? 
To determine what impact Coware had on performance, 
we compared our two populations for changes in inter-
face activity, communication rate, and error rate.  Our 
most significant result is that the error rate decreased for 
the population with Coware, though we can draw no con-
clusions from the other two measures.  These results are 
shown in Figure 5 (normalized to the Base populations 
average for the purposes of graphing), and error bars re-
flect the standard error.  We describe each of the values 
in the graph from left to right.   
The number of mouse clicks per minute provides a rough 
idea of how much interface effort was required to use the 
system.  Although we expected that the Coware compo-
nent would reduce the amount of interface work, this was 
not the case.  We suspect that the interface costs incurred 
when using the Coware component offset the reduction in 
clicks to generate plans manually.   
Communication per minute increased slightly in the 
groups that used Coware. Because our population size is 
so small, further analysis of the dialog will be required to 
determine why this increase occurred, and what it indi-
cates.  It could mean that the Coware groups were simply 
more talkative than the others; it could also prove that the 

use of Coware resulted in more deliberation during plan-
ning. 
Coware did help reduce the number of errors/min.  We 
broke the number of errors down by type to identify the 
types of errors Coware helped avoid.  We found that the 
biggest reduction was in the joint error rate.  This result 
is shown in Figure 6.   
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The three types shown in the chart are: joint errors, 
which are errors that occurred during some plan step in-
volving two actors; equipment errors, which occur when 
an actor did not deploy the equipment needed to lift a 
waste; and single errors, which are all other errors.  The 
number of joint errors was reduced in half for the Coware 
group, though the difference was not quite statistically 
significant.   
This result is expected, and confirms other data collected 
with the Vesselworld system.  In particular, joint errors 
account for a significant portion of errors made in Ves-
selworld [Alterman, et. al. 2001a], because they require 
close coordination, and thus the heightened attentions of 
the participants.  Coware produces coordinated plans in 
advance, and users may simply submit each step and be 
assured that actions will be coordinated.  This is further 
confirmed by the data discussed in the next section.    

5.3 Did Coware reduce cognitive effort? 
Our data (Figure 7) demonstrates that the plan step sub-
missions occurred more rapidly for plans that were gen-
erated by Coware. This is indirect evidence that the cog-
nitive effort during planning was reduced during execu-
tion of plans derived from Coware. 
To collect this data, we examined the average time be-
tween plan steps for each group, as well as during manual 
and Coware phases of activity within the Coware group.  
Figure 7 charts the average inter-step time and standard 
errors for four selections of steps.  Though there is insig-
nificant overall difference between the two populations 
and manual phases of activity, step duration during exe-
cution of Coware plans was reduced by about half to 
about 16 seconds.  This result corroborates the error data 
above, which points to the utility of automatically gener-
ated coordinated sequence of actions. 

6 Discussion 
The results presented in the previous section validate the 
non-autonomous approach to building adaptive group-

ware.  Recall the questions asked at the beginning of sec-
tion 5, 

1. Was Coware used?  

2. Did it improve performance?  

3. Did it reduce effort?  

4. Did Coware improve intent awareness? 
   
Our data provides positive answers for the first three 
questions.  Coware was used heavily, it improved per-
formance by reducing joint errors, and it reduces cogni-
tive load during plan submission.  
However, we have not addressed the fourth question.  
From our exit interviews, we have surmised that although 
Coware does provide intent information, users did not 
use it to stay aware of each other’s intentions. 
In response to one of the questions asked in the exit in-
terview, “Do you have any ideas about improvements to 
the system that would help you stay coordinated?” one 
user responded, 
“The only thing that I can thing of is maybe combining 
some of the different things together?  …Sometimes the 
most difficult part of the problem was knowing where 
people were or where they were going.  I guess you could 
use the Coware stuff to see that, but for some reason we 
didn’t.  Maybe if the planning window had something 
where it could show the final destination ?  Although this 
is kind of ridiculous because that’s exactly what Coware 
did.” 
Another user responded to the same question, 
“…Also, the interface is wayyy too busy, and it would 
help if all the crap I needed to look at were fixed in 
place, in a way where key info would be visible” 
 
Our preliminary conclusion from this data is that the 
awareness information provided by the Coware compo-
nent was not used because it was not situated in the inter-
face.  Rather, information was provided in a separate 
component, and required interpretation to be resolved to 
objects in the worldview. 
This result is echoed in the work of [Gutwin, et. al. 1996; 
Gutwin and Greenberg 2001] who emphasize the impor-
tance of situated information in the user interface. We are 
currently exploring the possibility of trying to incorpo-
rate information from the Coware component directly in 
the shared worldview. 
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