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Abstract

In this paper, we present experimental results
that demonstrate the effectiveness of a mixed-
initiative component, which we call a Coware
component, that is designed to support aware-
ness and planning in a collaborative domain.
The Coware component embodies a design
methodology for supporting collaboration in
groupware that leverages work users do to stay
coordinated to drive an intent inferencing proce-
dure. Intent inference is in turn used to drive
the mixed initiative Coware component, which
provides users with high individual payoff via
automatic plan generation, and supports mutual
intent awareness.

We will provide a summary account of our intent
inference framework, which uses: 1) information
collected via Coordinating Representations,
which are interface components designed to
structure and facilitate the exchange of coordina-
tion specific information, and; 2) a probabilistic
task-domain model represented as a Bayesian
Belief Network. The design of the Coware com-
ponent is discussed in depth, and an analysis of
empirical results from usage studies is presented.

Introduction

logical constraints (limited bandwidth and processing
power), attempted to provide external structure (turn-
taking, speech-act commitment networks [Flores, € al
to replace the need for real-time information of others’
activities. In general, these approaches were naesge

ful, partly because collaborative activity is typicallpra

fluid and dynamic than enforced external structusa c
allow for. More recently, several [Dourish and Belotti,
1992, Gutwin, et. al. 1996] have turned their aftamto
replacing the information channels that are missimg i
groupware systems; in general, these approaches employ
interface components that suppawareness While
these approaches have met with far more success, they
have typically been limited to reporting information
about location (in a shared workspace) and activities of
other users at some level of abstraction. This is not, how-
ever, always the right kind of information, nor is it al
ways feasible to provide enough detail to support the
kind of reasoning necessary for people to coordinate ef-
fectively. More specifically, the ability to anticigathe
actions of others, which is crucial for effective coordina
tion, is not well supported.

One obstacle to providing collaborators with direct sup-
port for anticipatory reasoning is that it is difficul
elicit appropriate information abountent from users.
[Dourish and Bellotti, 1992] explain this difficulys a
general problem with “active, informational” awareness
mechanisms, which require users to report information

When networked computers are interposed between peffr the benefit of the group. The three problems they
ple for tasks that require coordination, communicatioridentify are; 1) there is an apparent imbalance betwe
channels that typically support the unfolding jointiac ( o1IT Tor !
ity become severely constrained, or vanish completelyided by the individual may not take into account the
Visual and contextual queues, and even direct voice chgontext of the recipients, and may not be timely or-rele
may not be available. Many approaches have been tak&@nt; 3) recipients of this information incur cost in-de
to building groupware systems that attempt to providdermining its relevance. S

means for users to overcome these deficits. Early tecH-0 address the problem of eliciting intent, we apply an
niques, which had to contend with more severe techn@pproach called Non-Autonomous Al [Alterman, 2000],

cost and payoff for the individual; 2) information pro-

which allows us to perform imperfect intent infererge
using coordination work that users must do anyways.
Intent inference is used to drive a mixed-initiative
groupware component, called Coware (Collaborative
Awareness), that can offer semi-automatic planning as
well as a means for users to maintain awareness bf eac
others intentions.



Our approach can be summarized as follows: ferencing algorithm and the Coware component. In the
« Users must exchange information to stay coordinatedinal sections, we provide detail about our user studly an
in joint activities. present evidence that was collected. We conclude avith

) i discussion of the results.
» Collaboration via networked computers makes the ex-

change and maintenance of some classes of this ipp  The VVesselworld Domain
formation difficult.

. . = CRANEI-Control Center a
* Interface components called Coordinating Representa- ;M Hm',y S = jmm
tions (CRs) [Alterman, et. al. 2001b] may be intro- Hossage Aistory | Bxtering plamming phase.

duced to support the information requirements for dif-
ficult coordination tasks.

» Data collected from the users through these CRs is
well suited to support a mixed initiative intent infer-
encing procedure that can in turn be used to drive
automatic planning.

Coware provides users with a list of possible intentions,
and selecting from this list allows the system to auto-
matically generate relevant plans for users. In mgki

such selections, users implicitly confirm their intiens 2t rackor || petote masker ) Ghare. ) smes (7| Anckoes 7] e (7 Eabets
in a component that is visible to all users. Thusewe
pect that Coware can ultimately be used to overcome the Figure 1 The Vesselworld Control Center

problems identified in [Dourish and Belotti, 1992]. We

revisit this in the discussion section below. )

Our approach is generally applicable to collaborative The Vesselworld system, which was demonstrated at
applications. First, we employ discourse analysifitec CSCW 2000, is a colla_boratlve system we have built for
niques [Afeinman and Alterman, 2003; Cohen, 1997] tdhe purpose of developing a design methodology and ad-
identify coordination problems in an existing collabora-2aptation techniques fo_r Coll_aboratlve systems. Figuse 1
tive system. Coordinating Representations [3] that ar2 snapshot of the main window (the Control Center) in
suggested by an initial analysis of practice withekist-  Vesselworld for one of the ship captains.

ing system are designed and integrated into thesyst In Vessglworld, three participants co_IIaborate on remote
CRs typically lend structure to information that isrco workstations to remove barrels of toxic waste from a har-
municated by users to support coordination. Our intenPOr. Each participant is the captain of a ship, aradrt
inferencing technique utilizes Bayesian Belief Netks joint goal is to remove _all of the barrels from the harbor
[Pearl, 1988; Jenson, 1996] to convert this type ofrinfo Without spilling any toxic waste. The users are scdned
mation, along with a task-domain model, into predictions® function that takes into account the time it taleset
about the intended goals of the users. Finally, we denove all of the waste, the number (_)f barrels cleared, the
velop Coware components, a class of mixed-initiative?umber of errors made, and the difficulty of the problem.
Coordinating Representations, which use the output dfach ship has geographically limited view of the harbor,
the intent inferencing system to provide users with@nd thus ships in different locations will have difet
awareness of others’ intents. A key feature in tbsigh directly observable domain information. There are vary-
of these components is that they do not require perfedfd types and sizes of toxic waste barrels, which ienta
intent inferencing to provide users with a high degrke different coordination strategies that mvolvg more than_
utility. one of the actors. Each ship has some unique capabili-
In this paper we will focus on an empirical evaluategn ti€s, which determine the type of toxic waste it ieato

an implemented system that employs the methodologigmove from the harbor. o

described above. We will show that the evidence col] he progression of a Vesselworld session is turn based,
lected supports the non-autonomous claim; that we cafus every user must submit a step to be executed by the
leverage user work to make intent inference practical ~ S€rver before the server can evaluate executions and up-
useful. Specifically, our evidence shows that; 1)rgse date the world on each client screen. Users may qufgn
use Coordinating Representations; 2) Information fronflumber of steps in advance, although any plan steps tha
Coordinating Representations can be leveraged to prd,rJvoIve obj_epts are restricted to those objects that are
vide good predictions about user intentions; 3) Users usglfrently visible, and only one step can be submitted to
these predictions during a problem-solving session té€ server at a time. Communication may occur at any
support their activity. point, but all communication must occur through a text
In following sections, we describe our domain, and detajPased chat tool or one of the special purpose CRs.

the non-autonomous process as it has been employedtoughly three hundred hours of data have been col-
here. We will then describe the design of the infent lected with the Vesselworld system, and we have devel-



oped a suite of domain independent tools for analyzingiser, and modifications to data made by one user are dis
this data. In data obtained from experiments witlin&n  played globally. Each row of user-entered data in the
tial version of the system that offered only the chat toobject List contains several fields of information, irciu
for communication, we identified several classes of cooring a user assigned name, the status, and the dacati
dination problems [Alterman, et. al., 2001a; 2001kj. |
the next section, we describe how non-autonomous

was employed to alleviate some of these errors. e |41Lii1aﬂon rlmgize "f%memf‘rmim "fm = "I Notes
Add Entry H Clear Fields

3 Non'AUtonomOUS AI Name H Location H Size ‘| Equipment ‘| Action ‘| Leak H Notes |

Introducing Al technology into the interface is rare@ly ||mee s roso o e roste ot sod s

matter of simply plugging a module into an ObVIOUS|pm: s str et ossier o toskiy T

socket. The appropriate contextual information that iz S50 e e e e

=
g‘
L1

necessary to support any technique must be identifiem
converted into a form usable to the technique under co
sideration, and in most cases, there’s an additional u
specified something that gets thrown into the mix t
make everything work. This argument is presented il
detail in [Alterman, 2000]. ) ) )
Collaborative applications offer us an excellent opportu- Figure2 The Object List

nity to employ various Al techniques, because users must

exchange certain types of domain specific information i ) ) i ) )
order to stay coordinated. Our insight is that itasg- the associated object. A free text field is also p_rowded
ble to both reduce the amount of work that users must df@ each entry so that any other relevant information may
to communicate and maintain some types of coordinatioR€ communicated. Icons representing objects with valid
information, and at the same time convert this work intdocations may be displayed in the Control Center inter-
data that is easily used by general Al techniqudsefA  face, to assist users in mapping items in the distifects
man, 2001a]. To do this, we introduce a class of interf N the domain. _ _ _
components that are called Coordinating Representationdsage of the Object List generates tagged information
which offer convenient and useful structure that usergbout the perceived state of the world, and Vesselworld

Bl

‘ Delete Selected Xote ‘| Clear Selection |

may take advantage of. logs this along with other usage data. In all experits,
the Object List was heavily used, and the majoritysf u
3.1 Coordinating Representations ers enjoyed using it [Alterman, 2001a]. This infotioa

Coordinating Representations (CRs) are artifactsahat Provides us with both a dynamic representation of the

designed to explicitly support the communication anouser-percelive%dqmairLstate as well als a set of refese
management of specific types information that are srece US€'s €mploy during chat to discuss plans and goals co

sary for actors to stay coordinated. The information irf€'"iNg objects (this is not enforced, but users gelyeral

CRs may be entirely user-authored, or (as in the ohse US€ the names entered into the Object List to refebto

Coware) may be in part generated by the system. jects in chat). As this data is entirely user conated, it

CRs that are user-authored generally offer the user s is exceptionally well tuned to reasoning about intention
eral structured or semi-structured fields, such ezpd N the space of user awareness. In the following secti
down lists and fields that are drag targets for otbter we describe how this data can be harnessed to do intent

jects in the interface. If appropriately designtds type recognition that achieves better performance than would

of interface reduces the amount of work users need to d§erwise be possible.
to communicate the type of information supported by th
CR. The structured data that is generated dursegis 3.3 Intent Infgr encg o
readily accessible to general Al algorithms. Our approach to intent inference uses the coordination
One type of CR that was developed for Vesselworld wa¥ork users must do to generate more accurate intent in-
the Object List. In empirical studies the Objectthims ference than would otherwise be possible. The Object
heavily used and led to reduced communication via th&ist CR provides two readily available pieces of informa-
chat tool, and significantly improved performance in thetion that we can use in our intent recognition system.

domain task [Alterman, 2001a]. First, the Object List provides a list of active usdere
ences to objects in the domain, and these referenees ar
3.2 Object List often used in chat to discuss plans for objects. Inferma

tion about the domain as the users perceive it is also pr
vided, including: where each object is; what type of
quipment it requires, and; and how large each olgect

and consequently its coordination requirements). Our

The Object List is shown in Figure 2. It is an eredr
representation that structures and distributes mefioory
information about shared domain objects. The Objec
List replicates the same data in tabular format fathea



goal is to provide accurate predictions about the toxidrom the Object List, chat transcript, and plans, and
waste the users intend to address next in plan éwoecu posted to the unshaded nodes in the network. The inte-
In preliminary studies, references in chat to objatthe rior nodes (shaded) are incorporated to reduce the total
domain were tested as predictors of plans involving thoseumber of conditional probabilities entries required by
objects, without including the domain information from the model. Nodes are classified into three broad catego-
the Object List. We found chat references to target® ries to serve as general guidelines for building BNs in
good predictors of target plans in the five minutes preeother domains that employ Coordinating Representations.
ceding plan execution, especially where the targetter ¢ Coordination Information: These nodes represent
involved significant coordination. However, many refer- variables that are specific to the type of Coordinating
ences occurred in general throughout the logs, leatding Representation used.

very high false prediction rates. One possible approackh  State Information: Information regarding the current
to reducing the false prediction rate would have been to state that determines the possible goals in the do-
do a semantic analysis of the chat to determine which main.

references were the objects of planning conversations Domain heuristics: These are heuristics that are not
However, the additional information that was pre-tagged  explicitly captured in a domain model, yet are pow-
upon its entry into the object list was sufficient taver erful predictors of intent.

task-domain model. In order to combine both referenc&Vithin Vesselworld, these categories are instantia®d
and domain information into a predictive model, a Bayesfollows.

ian Belief Network (BN) was used. The “Coordination Information" nodes reflect a judg-
) ment as to how much a reference to a waste (taken di-
3.4 The Vesselworld Belief Network rectly from the Object List) that has appeared rdgent

To perform intent inference, we use a BN that gereasrat chat influences the _Iikelihood it will _be |Iﬂed nextAs )
likelihood estimate for every possible agent-waste£o-referencing activities are pervasive in collaboration
operator tuple, where wastes are taken directly frioen t [Clark and Wilkes-Gibbs, 1990], we expect that other
Object List, and operators come from a set of high-levefollaborative domains would benefit from CRs that pro-
goals we have defined. We are only concerned with relade similar referential information.

tive likelihood estimates, and not absolute probabilitiesThe “State nodes” reflect information about the state,

of each goal, and we make the assumption that goals cguch as whether the type of equipment is is apprtgria
be evaluated independently of each other. the size of the waste (which determines how many actor

Figure 3 portrays a slight simplification (two interior must be involved with the waste), and whether the agent
nodes and nodes for the tug operator have been omitté®l holding something. Some of this information (equip-
to simplify the diagram) of the Belief Network that is ment and size) is derived from the directly from the O
currently being used in Vesselworld. Data is accuteala ject List.

—
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Figure 3 Simplified version of the Vesselwor Id Belief Network



The domain specific heuristics are heading and proxAfter a goal is selected, the user is provided an option
imity, which may be derived from the positional informa- have the system automatically generate a plan for that
tion of objects in the Object List, and planning informa-goal. In cases where the goal involves multiple actors,
tion from the users. The output of the network is a-lik the other actors are invited to join the plan. If allited
lihood that a goal will be next. The “Agent State” nodeactors do not accept the invitation, a plan is not gener-
functions to switch between relevant portions of a netated.

work, so that either a “LOAD” or “LIFT” goal will be In summary, Coware uses the intent inferencing emtpn
returned depending on whether the agent is currentlgignificantly reduce the space of possible plans taa-m
holding a waste. The output is passed to the CoWarageable set, and users will use the system becasise-it

component described in the following section. plifies plan generation. As a by-product of user iater
tion with Coware, intent information is shared with al
4 Coware users.

In the following section, we present the results of our

The Coware component was designed with two primary,qer studies with the Coware component.

goals in mind:

1. It should not be intrusive or burdensome; users; Empirical Studies

should use it because they want to. )
y To evaluate they the effectiveness of Coware, we per-

2. It should be directly useful to tiredividual. formed a 40 hour study with four groups of three people.
It should provide collaborators with awareness off he players(_welred_members OL the )Brgndﬁs University
other’s future plans and goals. community (including non-students). Each group was

P g trained together for two hours in use of the system, and

a2 can e BIRIHE] then solved randomly chosen Vesselworld problems for
ganel S | B ! approximately ten hours. To alleviate fatigue concerns,
JLIFT b BRING sbarge w1 the experiment was split into four three-hour sessions.
Subjects were asked to fill out exit surveys where they
L SN ERNGShalE ! could give feedback about their experience with the sys-

JLIFT 12 JLIFT 13 ID I3 tem and the coordination issues arising in their group.

JLIFT et JLIFT 12 ID Myt The participants were divided into two populations of
T e — two groups each. One was tested for 20 hours on the
> system without the Coware component. The other was

s il Lottt tested on the system including the Coware component.

Get Plan

Our analysis seeks to answer the following questions:
hlowe o (278 318)

Join to crane 1. Was Coware used?

oty lft waste 2. Did it improve performance?

3. Did it reduce effort?

Accept | Deline 4. Did Coware improve intent awareness?
In the following, data is presented for the last 5 lscafr
Figure 4 The Cowar e component play time for each group, by which time performance

with the system had stabilized.

We show that Coware was used, that it improved per-
¢ . ) COrmance by reducing errors, and reduced user effart du
ponent. Itis made useful by offering users automéyica g hjan execution. In so doing, we demonstrate suppor
generated plans in exchange for a selection fromtaflis ¢," o\ claim that Coordinating Representations may be

candidate intentions provided by the intent inferencing,seq to collect data that can be harnessed to drivé an e
system. In selecting individual intentions, users cam fective intent inference system.

nicate their current intentions to each other through t

Coware interface. 5.1 Was Coware used?

Figure 4 is a screenshot of the Coware component. Th | dc ¢ te pl ithin tlse

system makes predictions about each of the participant@ groups used L.oware to generate pians within tise sy

current plan. Each participant has the option to confi (€M Table 1 shows usage statistics for the Coware com-
nent, both as rate of activity and proportion of total

one of five possible goals that the system has predict anning activity. Our evidence show that system predi

they are working on. A user can only select a goal fronﬁ 1S wer nfirmed. and furthermor lans were fre-
their column. When a goal is confirmed, it is copietbi . oNS Were co €d, and urthermore, pia
guently requested, accepted and executed.

the top row, which displays all users currently camfd Our data sh that f i made b ;
goals. This is the primary source of awareness informa-J' datd Shows that a confirmation was made by a use
tion in the Coware component. roughly every minute and a half during a game (games

last anywhere from 45 min. to two hours). Confirmation

Thus, Coware is implemented as a passive, shared co



Confirmation  Requests %Requests %Accepted Coware Crane
Frequency Per Conf Accepted Completed Coware Steps Goals
Avg. 0:01:32 1.31 71.02% 82.88% 24.60% 43.34%
Std. Dev 0:00:46 0.30 18.88% 6.74% 7.59% 14.69%

Table 1 Usage statisticsfor Coware

frequency takes into account total clock time of eash se ) )
sion to provide the average elapsed time between confib.2 Did Coware improve performance?

mations (when a user clicked on a prediction). To determine what impact Coware had on performance,
Once confirmations are made, a plan can be requested fwe compared our two populations for changes in inter-
that confirmation any number of times. The second colface activity, communication rate, and error rate. Our
umn shows that there were at least as many reqessts most significant result is that the error rate deseéafor
confirmations (though not necessarily a plan request fofhe population with Coware, though we can draw no con-
each confirmation), and that multiple requests weoaec clusions from the other two measures. These resuts ar
sionally made for a confirmation. ~ shown in Figure 5 (normalized to the Base populations
After a plan is requested, it may only be used oncis (i average for the purposes of graphing), and error bars re-
cleared from the users window after accepted). Thelth flect the standard error. We describe each of theegalu
column shows that roughly 71% of the plans requestefh the graph from left to right.

were accepted, and the final column shows that 83% ofhe number of mouse clicks per minute provides a rough
the plans accepted were actually executed to conopleti jdea of how much interface effort was required to hse t
that is, every step in the generated plan was subthitt  system. Although we expected that the Coware compo-
the server. nent would reduce the amount of interface work, this wa
In the second part of the table, we provide data that de not the case. We suspect that the interface costsried
onstrates a significant proportion of planning work wasyhen using the Coware component offset the reduction in
offloaded to Coware. The first column (Coware Stepsklicks to generate plans manually.

shows that nearly a quarter of all plan steps subthitte Communication per minute increased slightly in the
the server (where an average game contains about 38@oups that used Coware. Because our population size is
total submitted individual steps) came from the Cowargo small, further analysis of the dialog will be regdito
component. determine why this increase occurred, and whatdt-in
The second column shows that 43% of goalsaccom-  cates. It could mean that the Coware groups werelgimp
plished by the cranes (where a crane’s goal is one @Qhore talkative than the others; it could also prove that t

System effect on various measures Errors broken down by category
140%
£ 120% 0.06
= T -
2 100% - 0.05
() 0.04
% 80% 1 BBase é OBase
- 60% 2 % @ Coware
S 0 @ Coware b 0.02 1 T
c
9 40% 1 0.01 - '
& 20% +— 0.00 -
0% : Single Joint Err/Min  Equip Err/Min
. . . Err/Min
Mouse/Min  Comm/Min  Errs/Min
Figure 5 Cowar e effects on various metrics Figure 6 Coware errorsbroken down by category

“Lift”, “Load”, “Joint Load”, or “Joint Lift") that could use of Coware resulted in more deliberation during plan-
have been produced by the Coware component, weraing.
This number could not be calculated for the tug operatorCoware did help reduce the number of errors/min. We
as tug’'s plans do not have readily distinguished goalbroke the number of errors down by type to identify the
(e.g. a plan for the tug may consist of any number ofypes of errors Coware helped avoid. We found that the
moves between two arbitrary locations at any time). biggest reduction was in the joint error rate. Thisute

is shown in Figure 6.



Avg. Length of time between submits ware. Recall the questions asked at the beginnisgof
tion 5,
0:0052 DAvg, Base. Was Coware used?
000:43 _ B Avg. Coware 2. Did it improve performance?
00035 T oo Egc’ware' Manual 3. Did it reduce effort?

= 0:00: oWare - Auto ) )

% 0:00:26 L - 4. Did Coware improve intent awareness?

=]

° 00017 -1 Our data provides positive answers for the first three
0:00:09 - guestions. Coware was used heavily, it improved per-
0:00:00 f_ormance by_ reducing joint_ errors, and it reduces cogni-

Average Step Duration tive load during plan submission. _
However, we have not addressed the fourth question.
From our exit interviews, we have surmised that although

Coware does provide intent information, users did not
use it to stay aware of each other’s intentions.

In response to one of the questions asked in the exit in
) o terview, “Do you have any ideas about improvements to
The three types shown in the chart are: joint errorsghe system that would help you stay coordinated?” one
which are errors that occurred during some plan step i yser responded,

VOIVing two actors; equipment errors, which occur When‘The 0n|y th|ng that | can th|ng of is maybe Comb@

an actor did not deploy the equipment needed to lift &ome of the different things together? ...Sometimes
waste; and single errors, which are all other errdise  most difficult part of the problem was knowing wher
number of joint errors was reduced in half for the Cowargyeople were or where they were going. | guesscyaid
group, though the difference was not quite statistycal yse the Coware stuff to see that, but for someorag
significant. didn't. Maybe if the planning window had something
This result is expected, and confirms other data ct®@té  where it could show the final destination ? Altgbtthis
with the Vesselworld system. In particular, joint@s s kind of ridiculous because that's exactly whaw@re
account for a significant portion of errors made in Vesid.”

selworld [Alterman, et. al. 2001a], because they mju Another user responded to the same question,

close coordination, and thus the heightened attentbns «  also, the interface is wayyy too busy, and it Wou
the participants. Coware produces coordinated plans iRelp if all the crap | needed to look at were fixied
advance, and users may simply submit each step and Bgice, in a way where key info would be visible”

assured that actions will be coordinated. This ishierrt

confirmed by the data discussed in the next section.  Qur preliminary conclusion from this data is that the
. . awareness information provided by the Coware compo-
5.3 Did Coware reduce cognitive effort? nent was not used becalfjse it Wassi)éutatedin the inter-
Our data (Figure 7) demonstrates that the plansibp face. Rather, information was provided in a separate
missions occurred more rapidly for plans that were-gencomponent, and required interpretation to be resolved to
erated by Coware. This is indirect evidence that te ¢ objects in the worldview.

nitive effort during planning was reduced during exec This result is echoed in the work of [Gutwin, et. E396;

tion of plans derived from Coware. Gutwin and Greenberg 2001] who emphasize the impor-
To collect this data, we examined the average time b&ance of situated information in the user interface. ke
tween plan steps for each group, as well as duringuala  currently exploring the possibility of trying to incorpo-
and Coware phases of activity within the Coware grouprate information from the Coware component directly in
Figure 7 charts the average inter-step time anddstah the shared worldview.

errors for four selections of steps. Though there igins

nificant overall difference between the two populationsa ck nowledgments

and manual phases of activity, step duration durirgy ex __ . _

cution of CO\FI)V&I’E plans wasyredue:ed by about rr%” td his research was supported by the Office of Navel Re-
about 16 seconds. This result corroborates the error dag§arch under grants No. N00014-96-1-0440 and N66001-
above, which points to the utility of automatically gener- -1-8965.

ated coordinated sequence of actions.

Figure 7 Plan step submission freguency
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