
 

 

 

 

THE DISCIPLE-RKF LEARNING AND REASONING AGENT 

 

Gheorghe Tecuci, Mihai Boicu, Cristina Boicu, 

Dorin Marcu, Bogdan Stanescu, Marcel Barbulescu 

 

MSN 4A5, Learning Agents Center and Computer Science Department, 

George Mason University, 4400 University Drive, Fairfax, VA 22030, USA 

 

{tecuci, mboicu, ccascava, dmarcu, bstanesc}@gmu.edu, mbarb@cs.gmu.edu 

http://lac.gmu.edu, tel: 1 703 993-1722, fax: 1 703 993-1710 

 

 

 

 



 2 

 

 

Abstract 

Over the years we have developed the Disciple theory, methodology, and family of tools for 

building knowledge-based agents. This approach consists in developing an agent shell that can 

be taught directly by a subject matter expert, in a way that resembles how the expert would teach 

a human apprentice when solving problems in cooperation. This paper presents the most recent 

version of the Disciple approach and its implementation in the Disciple-RKF system. Disciple-

RKF is based on methods for mixed-initiative problem solving, where the expert solves the more 

creative problems and the agent solves the more routine ones, integrated teaching and learning, 

where the agent helps the expert to teach it, by asking relevant questions, and the expert helps the 

agent to learn, by providing examples, hints and explanations, and multistrategy learning, where 

the agent integrates multiple learning strategies, such as learning from examples, learning from 

explanations, and learning by analogy, to learn from the expert how to solves problems. 

Disciple-RKF has been successfully applied to build learning and reasoning agents for military 

center of gravity analysis, which are used in several courses at the US Army War College. 

 

Key Words: multistrategy apprenticeship learning, problem solving through task reduction, 

mixed-initiative reasoning, plausible version spaces, rule learning, ontology, agent development, 

military center of gravity analysis 

 

 

 



 3 

1. INTRODUCTION 

For almost 20 years we have performed research on developing a theory and the associated 

methodologies and tools for building agents that incorporate the knowledge of a subject matter 

expert (Tecuci 1988, 1998; Boicu 2002).  

Our approach to this problem, which we have called the Disciple approach, consists in 

developing a problem solving and learning agent that can be taught directly by a subject matter 

expert to become a knowledge-based assistant. The expert should be able to teach the agent how 

to perform problem solving tasks in a way that is similar to how the expert would teach a person. 

For instance, the expert may show the agent how to solve specific problems, and may help it to 

understand the reasoning process. As the agent learns general problem solving rules from these 

problem solving examples and builds its knowledge base, the expert-agent interaction evolves 

from a teacher-student interaction toward an interaction where both collaborate in solving a 

problem. During this joint problem solving process, the agent learns not only from the 

contributions of the expert, but also from its own successful or unsuccessful problem solving 

attempts. This process is based on: 

• mixed-initiative problem solving (Tecuci et al., 1993), where the expert and the agent 

solve problems in cooperation and the agent learns from the contributions of the expert; 

• integrated learning and teaching, where the expert helps the agent to learn (for instance, 

by providing examples, hints and explanations), and the agent helps the expert to teach it 

(for instance, by asking relevant questions), and; 

• multistrategy learning (Michalski and Tecuci, 1994), where the agent integrates 

complementary strategies, such as learning from examples, learning from explanations, 

and learning by analogy, to learn general concepts and rules. 



 4 

Over the years we have continuously extended and improved the Disciple approach, which is 

reflected in a sequence of increasingly more powerful problem solving and learning agents from 

the Disciple family of agents. The goal of this paper is to overview the knowledge 

representation, problem solving and learning methods of the most recent member of this family, 

Disciple-RKF, which has been developed as part of the DARPA’s Rapid Knowledge Formation 

(RKF) program (Tecuci et al., 2001). 

The next section introduces the military center of gravity analysis domain which was used as 

the main application domain of Disciple-RKF and will provide examples for presenting Disciple-

RKF. Section 3 presents the general architecture of Disciple-RKF, which integrates general 

components (usable across many application domains) and specific components (developed for a 

specific application domain to improve the usability and the efficiency of the agent). Section 4 

presents the task reduction paradigm, the general problem solving approach of Disciple-RKF, 

which allows it to be used in a wide variety of domains (such as action planning, military course 

of action critiquing, or center of gravity analysis), and for several purposes (such as, modeling 

the expert’s reasoning, mixed-initiative problem solving, and agent teaching and learning). 

Section 5 presents the knowledge representation of Disciple-RKF, which is based on the concept 

of plausible version space, allowing the agent to learn with an evolving representation language 

and to use partially learned knowledge in problem solving. This sets the stage for presenting the 

multistrategy learning methods of Disciple-RKF in section 6. These methods integrate learning 

from examples, learning from explanations, and learning by analogy. Section 7 presents an 

experiment with Disciple-RKF and its deployment at US Army War College. The paper 

concludes with a discussion of related research, current limitations of Disciple-RKF and, the 

main directions of future research. 



 5 

2. SAMPLE APPLICATION DOMAIN:  

MILITARY CENTER OF GRAVITY ANALYSIS 

Military center of gravity analysis was used as a challenge problem in the DARPA’s RKF 

program to test the knowledge acquisition, learning and problem solving methods of Disciple-

RKF, and will be used in this paper to illustrate them. The concept of center of gravity, 

introduced by Karl von Clausewitz (1832), is fundamental to military strategy, denoting the 

primary source of moral or physical strength, power or resistance of a force (Strange, 1996). The 

most important objective of a force (state, alliance, coalition, or group), in any type of conflict, is 

to protect its own center of gravity while attacking the center of gravity of its enemy. Therefore, 

in the education of strategic leaders at all the U.S. senior military service colleges, there is great 

emphasis on the center of gravity analysis. This analysis requires a wide range of background 

knowledge not only from the military domain, but also from the political, psychosocial, 

economic, geographic, demographic, historic, international, and other domains (Giles and Galvin 

1996). In addition, the situation, the adversaries involved, their goals, and their capabilities can 

vary in important ways from one scenario to another. Therefore, this is a very good example of 

knowledge-intensive, expert problem solving, that a Disciple agent should be able to learn.  

Our approach to center of gravity analysis, based on the work of Strange (1996) and Giles 

and Galvin (1996), and developed with experts from the US Army War College, consists of two 

main phases: identification and testing. During the identification phase, center of gravity 

candidates from different elements of power of a force (such as government, military, people, 

economy) are identified. For instance, a strong leader is a center of gravity candidate with 

respect to the government of a force. Then, during the testing phase, each candidate is analyzed 

to determine whether it has all the critical capabilities that are necessary to be the center of 



 6 

gravity. For example, a leader needs to be protected, stay informed, communicate (with the 

government, the military, and the people), be influential (with the government, the military, and 

the people), be a driving force, have support (from the government, the military, and the people), 

and be irreplaceable. For each capability, one needs to determine the existence of the essential 

conditions, resources and means that are required by that capability to be fully operative, and 

which of these, if any, represent critical vulnerabilities. 

 

3. AGENT ARCHITECTURE 

The architecture of Disciple-RKF includes the components from Figure 1, each implemented as a 

set of collaborative agents (Boicu et al., 2004). The core of the system is the learning agent shell, 

which has the following domain-independent components: 

• A problem solving component based on the task reduction paradigm of problem solving. 

Figure 1: General architecture of a Disciple agent. 

Disciple Agent

Domain Independent Modules Domain Dependent
Modules

Learning Agent Shell

Graphical User 
Interface

Customized 
User Interface

Customized 
Problem Solver

Problem
Solver

Knowledge 
Acquisition 
and Learning

Knowledge 
Base Manager Knowledge Base

Knowledge 
Repository



 7 

It includes a modeling agent that helps the user to express his/her contributions to the 

problem solving process, a mixed-initiative (step-by-step) problem solving agent, and an 

autonomous problem solving agent. 

• A knowledge acquisition and learning component for acquiring and refining the 

knowledge of the agent, allowing a wide range of operations, including ontology import 

(from external knowledge repositories, such as CYC (Lenat, 1995)), user definition of 

knowledge base elements (through the use of editors and browsers), ontology learning, 

and rule learning. 

• A knowledge base manager which controls the access to and the updates of the 

knowledge base. Each module of Disciple-RKF can access the knowledge base only 

through the functions of the knowledge base manager. 

• A windows based, domain-independent, graphical user interface. 

The three components in the right hand side of Figure 1 are the typical domain dependent 

components of a Disciple-RKF agent that was customized for a specific application, such as 

center of gravity analysis: 

• A customized problem solving component that extends the basic task-reduction 

component in order to satisfy the specific problem solving requirements of the 

application domain. 

• Customized graphical user interfaces which are built for the specific Disciple-RKF agent 

to allow the experts and the end users to communicate with the agent as close as possible 

to the way they communicate in their domains. 

• The knowledge base of the Disciple-RKF agent that contains knowledge specific to the 

center of gravity analysis domain. 



 8 

The next sections present the knowledge representation and the problem solving and learning 

methods implemented by these modules.  

 

4. PROBLEM SOLVING 

A Disciple-RKF agent performs problem solving tasks by using the task reduction paradigm 

(Nilsson 1971; Powell and Schmidt 1988). In this paradigm, a complex problem solving task is 

successively reduced to simpler tasks. Then the solutions of the simplest tasks are found and 

these solutions are successively combined into the solution of the initial task, as illustrated in the 

left hand side of Figure 2. 

In the Disciple approach we have refined this general strategy so that it can be easily used 

both by the expert (when teaching the agent or when contributing to the joint problem solving 

process) and the agent (when solving a problem). We did this by introducing questions and 

Figure 2: Problem-solving through task reduction and solution composition. 

S11

S1

S1n

S11a

S11m

T1n

T11

…
…

T1

Q1

A11a

A11m

Q11

…
…

S0T0

Q0

A0

S11

S1

S1nT1n

T11

…

T1

…

S0T0

A1

so
lu

tio
n 

co
m

po
si

tio
n 

st
ep

ta
sk

 r
ed

uc
tio

n 
st

ep
ta

sk
 r

ed
uc

tio
n 

st
ep

so
lu

tio
n 

co
m

po
si

tio
n 

st
ep

Q’0
A’ 0

Q’11

A’ 11

Q’1
A’ 1



 9 

answers that guide the task reduction process, as illustrated on the right hand side of Figure 2 and 

discussed in more detail in (Bowman 2002). In this refined task reduction approach, finding a 

solution of a problem solving task (e.g. T0 on the right hand side of Figure 2) becomes an 

iterative process where, at each step, the expert (or the agent, depending on who is doing the 

problem solving) looks for some relevant information for solving T0 by asking a question Q0. 

The answer A0 identifies that piece of information and leads to the reduction of the current task 

to simpler tasks (e.g. T1). Alternative questions correspond to alternative problem solving 

strategies. Multiple answers of a question (e.g. A11a or A11m) correspond to multiple solutions. 

Solution composition (e.g. the composition of S11a , … , S11m into S11) is also guided by questions 

and answers. 

Figure 8 illustrates the decomposition process with an example from the center of gravity 

analysis domain. In this example, the expert is showing the agent how to determine a center of 

gravity candidate for the Sicily 1943 scenario (World War II at the time of the invasion of the 

island of Sicily by the allied forces). 

 

5. LEARNABLE KNOWLEDGE REPRESENTATION 

The knowledge base of Disciple-RKF is structured into an object ontology and a set of task 

reduction rules and solution composition rules. The object ontology is a hierarchical 

representation of the objects from the application domain. It represents the different kinds of 

objects, the properties of each object, and the relationships existing between objects. The object 

ontology of Disciple-RKF for the center of gravity domain contains 355 object concepts. 

Moreover, a scenario such as the Sicily_1943 scenario used in this paper, is described with 



 10 

around 900 facts (i.e. triplets of the form “object feature value”). A fragment of this object 

ontology for the center of gravity domain is shown in Figure 3.  

The object ontology is incomplete. There are relevant concepts and instances from the 

application domain which are not represented. Moreover, the representation of a given concept, 

or instance, may be incomplete in the sense that it does not include all of its relevant properties 

and relationships. This object ontology will be extended by the agent during the problem solving 

and learning process (Boicu et al., 2003).  

In addition to the hierarchy of instances and concepts illustrated in Figure 3, the object 

ontology also includes a hierarchy of features. In this hierarchy, for instance, the feature 

“has_as_head_of_government” is a subfeature of “has_as_political_leader,” which is a 

subfeature of “has_as_controlling_leader.” Each feature F is characterized by a domain and a 

range. The domain of F is a concept that represents all objects that may have the feature F. The 

range of F is a concept that represents all the possible values of F. The feature hierarchy for the 

Figure 3. Fragment of the object ontology for the center of gravity domain. 

ha
s 

as
 m

em
be

r

force

multi group 
force

single group 
force

single 
state force

US 1943

multi state 
force

single member forcemulti member force

Allied Forces 1943

multi state 
alliance

multi state 
coalition

equal partners 
multi state alliance

dominant partner 
multi state alliance

. . .

. . .

. . .

has as member
UK 1943

has as strategic goal . . .

. . .

European Axis 1943

subconcept of

instance of

opposing force

other feature

group

illegal
group

legal
group

. . . . . .

. . .



 11 

center of gravity domain contains 193 feature definitions. 

The object ontology plays a crucial role in Disciple, being at the basis of knowledge 

representation, user-agent communication, problem solving, knowledge acquisition and learning. 

Using the (object and feature) concepts from the object ontology, one can define more complex 

concepts as logical expressions involving these concepts. The basic representation unit (BRU) 

for such a concept has the form {?O1, ?O2 ,…, ?On}, where each ?Oi has the structure indicated 

by [1]. 

?Oi is  concepti      [1] 
 featurei1 ?Oi1 
 . . .  
 featurein ?Oim 

 

Concepti is an object concept from the object ontology, a numeric interval, or a list of 

strings, and ?Oi1 … ?Oim are distinct variables from the set {?O1, ?O2, … , ?On} . For example, 

the concept “the pair of entities ?O1 and ?O2, where ?O1 is an equal partner, multi-state alliance 

that has, as one of its members, ?O2, which is a single-state force” is represented by expression 

[2]. 

?O1 is equal_partners_multi_state_alliance  [2] 
 has_as_member ?O2  
?O2 is single_state_force 

In general, a concept may be a conjunctive expression of form [3], meaning that any instance of 

the concept satisfies BRU and does not satisfy BRU1 and … and does not satisfy BRUp. 

  BRU & not BRU1 & … & not BRUp      [3] 

However, instead of “not” we write “Except When,” as illustrated in [4]. This concept 

represents “the pair of entities ?O1 and ?O2, where ?O1 is an equal partner multi-state alliance 



 12 

that has, as one of its members, ?O2, which is single-state force, except when ?O2 is a single-state 

force with a minor military contribution.” 

?O1 is equal_partners_multi_state_alliance  [4] 
 has_as_member ?O2  
?O2 is single_state_force 
 
Except When 
?O2 is   single_state_force 
 has_as_military_contribution ?O3 
?O3 is   minor_military_contribution 
 

 The object ontology is at the basis of the generalization language for learning. For 

instance, a concept such as [2] may be generalized by replacing an object concept from its 

description (e.g. “equal_partners_multi_state_alliance”) with a more general concept from the 

ontology (e.g. “multi_state _alliance”). Other generalization or specialization rules may be used 

to generalize or specialize such concepts as, for instance, dropping or adding an object feature or 

an Except When condition, generalizing a number to an interval, or an interval to a larger 

interval (Tecuci, 1998). 

 Partially learned concepts are represented as plausible version spaces (Tecuci, 1998), as 

illustrated in Figure 4. The plausible upper bound of this version space contains the two concepts 

shown in [5]. 

?O1 is multi_member_force    [5] 
 has_as_member ?O2  
?O2 is force 

and 

?O1 is opposing_force 
 has_as_member ?O2  
?O2 is force 

Similarly, the plausible lower bound of this version space contains two concepts, one 

where ?O1 is a multi_state_alliance, and another one where ?O1 is an opposing_force. In the 



 13 

current version of Disciple, the same features appear both in the upper bound and in the lower 

bound (such as “has_as_member” in the example from Figure 4). 

The concept Eh to be learned (see Figure 4) is, as an approximation, less general than 

one of the concepts from the plausible upper bound. Eh is also, again as an approximation, more 

general than any of the concepts from the plausible lower bound. During learning, the two 

bounds converge toward one another through successive generalizations and specializations, 

approximating Eh better and better. This is different from the version spaces introduced by 

Mitchell (1978), where one of the concepts from the upper bound is always more general than 

the concept to be learned (and the upper bound is always specialized during learning), and any of 

the concepts from the lower bound is always less general than the concept to be learned (and the 

lower bound is always generalized during learning). The major difference is that the version 

spaces introduced by Mitchell (1978) are based on a complete representation space that includes 

the concept to be learned. On the contrary, the representation space for Disciple is based on an 

incomplete and evolving object ontology, as mentioned above. Therefore, Disciple addresses the 

more complex and more realistic problem of learning in the context of an evolving representation 

space. 

Plausible Lower Bound
?O1 is {multi_state_alliance, opposing force}

has_as_member ?O2 

?O2 is {single_state_force}

Plausible Upper Bound
?O1 is {multi_member_force, opposing_force}

has_as_member ?O2 

?O2 is {force}

Universe of 
Instances

Eh

Plausible 
Upper Bound

Plausible 
Lower Bound

Figure 4: A plausible version space for a partially learned concept. 



 14 

The notion of plausible version space is fundamental to the knowledge representation, 

problem solving, and learning methods of Disciple, as discussed below and in section 6. All the 

knowledge elements from the knowledge base are represented using this construct and are 

learned or refined by Disciple. For instance, Disciple-RKF learns general feature definitions 

from specific examples, the domains and the ranges of the partially learned features being 

represented as plausible version spaces.  

The knowledge base of Disciple-RKF also contains tasks reduction rules and solution 

composition rules that are learned from specific examples of reductions or compositions. Figure 

6 shows an example of a task reduction step and the task reduction rule learned from it. The rule 

is an IF-THEN structure that expresses under what condition a certain type of task may be 

reduced to a simpler subtask (or to several subtasks, in case of other rules). The rule is 

interpreted as follows: If the task to be solved is T1, we are asking the question Q, and if the 

answer is A (or, equivalently, the applicability condition of the rule is satisfied), then we can 

reduce T1 to T11.  

The rule in Figure 5 is a very simple one, with only a Main Condition. In general, 

however, in addition to a Main Condition, a learned rule may have several Except When 

Conditions (which should not be satisfied for the rule to be applicable), as well as positive and 

negative exceptions. Thus, in general, the condition of the rule is a concept of the form “BRU 

except-when BRU1 … except-when BRUp” meaning that the rule may be applied for any 

instance of the condition concept. The rule shown in Figure 5 is only partially learned. Therefore, 

instead of a single applicability condition, it has a plausible version space for the exact condition 

to be learned. The knowledge base of Disciple-RKF contains 368 reduction rules, all learned by 

the agent. It also contains 269 composition rules. 



 15 

6. MIXED-INITIATIVE MODELING, LEARNING AND PROBLEM SOLVING 

The Disciple approach covers all the phases of agent development and use. First, a knowledge 

engineer works with a subject matter expert to develop an ontology for the application domain. 

They use the ontology import module (to extract relevant ontology elements from existing 

knowledge repositories) as well as the various ontology editors and browsers of Disciple-RKF. 

The result of this knowledge base development phase is an object ontology (see Figure 3) which 

is complete enough to be used as a generalization hierarchy for learning, allowing the expert to 

teach the Disciple agent how to solve problems, with limited assistance from a knowledge 

engineer. The teaching process is illustrated in Figure 6 and discussed in the following.  

 6.1. Rule Learning 

The expert formulates an initial problem solving task, such as “Determine a center of 

gravity for the Sicily 1943 scenario,” (see Figure 5) and shows the agent how to solve this task 

by using the task reduction paradigm described in section 4. The expert uses natural language, as 

if s/he would think aloud. S/he asks a question related to some piece of information which is 

relevant to solving the current task. The answer identifies that piece of information and leads the 

expert to reduce the current task to a simpler task (or, in other cases, to several simpler tasks). 

Figure 5 shows a sequence of task reduction steps. From each of these steps the agent learns a 

general task reduction rule. Table 1 and table 2 present the rule learning problem and method of 

Disciple-RKF. They will be illustrated in the following. 

Let us consider the 4th step from the task reduction tree in Figure 5, the same step also 

shown also on the left hand side of Figure 6. From this task reduction step, Disciple-RKF learned 

the task reduction rule shown in the right hand side of Figure 6. 



 16 

Figure 5: An illustration of mixed-initiative modeling, problem solving, and learning. 

Determine a center of gravity for 

Allied_Forces_1943 which is a multi_member_force

What type of center of gravity should we 

consider for this multi_member_force?

Determine a center of gravity for a member of 

Allied_Forces_1943

We consider one corresponding to a member of it

Therefore we need to 

US_1943

Determine a center of gravity for US_1943

Which is a member of Allied_Forces_1943?

Therefore we need to 

Determine a center of gravity for the Sicily_1943 scenario
We need to 

Which is an opposing_force in the Sicily_1943 scenario?

Determine a center of gravity for Allied_Forces_1943
Therefore we need to 

What type of force is Allied_Forces_1943?

Allied_Forces_1943 is a multi_member_force

Therefore we need to 

Provides

examples 

of correct 

task 

reduction 

steps

1. Modeling

Rule1

Learns task 

reduction 

rules

2. Learning

Allied_Forces_1943 

Rule2

Rule3

Rule4

?

Applies

Accepts

reduction

Refines

3. Solving
5. Refining

4. Critiquing

Determine a center of gravity for a member of 
European_Axis_1943

Therefore we need to 

Germany_1943

Determine a center of gravity for Germany_1943

Which is a member of European_Axis_1943?

Therefore we need to 

Rule4

Rule4

…

?

Applies

Rejects

reduction

Refines

6. Solving 8. Refining

7. Critiquing

Determine a center of gravity for a member of 
European_Axis_1943

Therefore we need to 

Finland_1943

Determine a center of gravity for Finland_1943

Which is a member of European_Axis_1943?

Therefore we need to 

Rule4

Rule4

…



 17 

Rule learning is a mixed-initiative process between the expert (who knows why the 

reduction is correct and can help the agent to understand this) and the Disciple-RKF agent (that 

is able to generalize the task reduction example and its explanation into a general rule, by using 

the object ontology as a generalization language). This process is based on a communication 

protocol which takes into account that: 

- It is easier for an expert to understand sentences in the formal language of the agent 

than it is to produce such formal sentences; and  

- It is easier for the agent to generate formal sentences than it is to understand 

sentences in the natural language used by the expert. 

The question and its answer from the task reduction step represent the expert’s reason (or 

explanation) for performing that reduction. Because they are in natural language, the expert has 

to help Disciple-RKF “understand” them in terms of the concepts and features from the object 

ontology. Consider [6], the question and the answer from the example in Figure 6. Their meaning 

in the object ontology is expressed as in [7]. We call expression [7] the “explanation” of the 

example.  

GIVEN: 
• An example of a task reduction step. 
• A knowledge base that includes an object ontology and a set of task reduction rules. 
• A subject matter expert that understands why the given example is correct and may 

answer agent’s questions. 
 
DETERMINE: 
• A plausible version space task reduction rule which is generalization of the specific task 

reduction step. 
• An extended object ontology (if needed for rule learning). 

Table 1: The Rule Learning Problem. 



 18 

“Which is a member of Allied_Forces_1943? US_1943”     [6] 

“Allied_Forces_1943 has_as_member US_1943”      [7] 

While a subject matter expert can understand the meaning of the above formal 

expression, s/he cannot easily define it for the agent because s/he is not a knowledge engineer. 

For instance, s/he would need to use the formal language of the agent. But this would not be 

enough, as the expert would also need to know the names of the potentially many thousands of 

concepts and features from the agent’s ontology. Therefore, the agent will hypothesize plausible 

meanings of the question-answer pair by using simple natural language processing, analogical 

1. Explanation Generation 
Identify a formal explanation EX of why the example E is correct, through a mixed-initiative 
interaction with the subject matter expert. The explanation is an approximation of the 
meaning of the question and answer, expressed with the objects and the features from the 
object ontology. During the explanation generation process, new objects and features may be 
elicited from the expert and added to the object ontology. 
 
2. Variable Generation 
Generate a variable for each instance, number and string that appears in the example and its 
explanation. Then use these variables, the example, and the explanation, to create an instance 
IC of the concept representing the applicability condition of the rule to be learned. This is the 
concept to be learned as part of rule learning. 
 
3. Rule Generation 
Generate the tasks, question, and answer of the rule by replacing each instance or constant 
from the example E with the corresponding variable generated in step 2. Then generate the 
plausible version space of the applicability condition of the rule. The concept represented by 
this condition is the set of instances and constants that produce correct instantiations of the 
rule. The plausible lower bound of this version space is the minimally general generalization 
of IC determined in step 2, generalization which does not contain any instance. The plausible 
upper bound of this version space is the set of the maximally general generalizations of IC. 
 
5. Rule Analysis 
If there is any variable from the THEN part of a rule which is not linked to some variable 
from the IF part of the rule, or if the rule has too many instances in the knowledge base, then 
interact with the expert to extend the explanation of the example and update the rule if new 
explanation pieces are found. Otherwise end the rule learning process. 

Table 2: The Rule Learning Method. 



 19 

reasoning with previously learned rules, and general heuristics, and will express them as 

explanation fragments. In general, an explanation fragment identified by the agent, such as [7], is 

a relationship (or a relationship chain) involving instances, concepts, and constants from the task 

reduction step and from the knowledge base. The agent will then propose these explanation 

pieces to the expert, ordered by their plausibility, so that the expert can select the ones the has the 

meaning of the question-answer pair. The expert may also help the agent to propose the right 

explanation pieces by proving hints, such as pointing to a relevant object that should be part of 

the explanation.  

Using the example and its explanation, Disciple-RKF will generate the task reduction 

rule from the right hand side of Figure 6. First the agent will generate a variable for each 

instance, number, or string that appears in the example and its explanation. Then it will use these 

variables V to generalize the task reduction example E into an IF-THEN rule R, by replacing 

each instance or concept with the corresponding variable.  

The next step in the rule learning process is to determine which are the instantiations of 

Figure 6: An example of a task reduction step and the rule learned from it. 

Determine a center of gravity for a member 
of ?O1

Question: Which is a member of ?O1 ?
Answer: ?O2

Determine a center of gravity for ?O2

US_1943

Which is a member of Allied_Forces_1943?

We need to 
Determine a center of gravity for a 
member of Allied_Forces_1943

Therefore we need to 
Determine a center of gravity for US_1943

Example 1 of a task reduction step

Plausible Lower Bound Condition

?O1 is
equal_partner_multi_state_alliance
has_as_member ?O2 

?O2 is single_state_force

Plausible Upper Bound Condition

?O1 is multi_member_force
has_as_member ?O2 

?O2 is force

Rule 4 learned from Example 1

Main Condition

THEN

IF

Instantiated Condition

?O1 is Allied_Forces_1943
has_as_member ?O2 

?O2 is US_1943

Allied_Forces_1943 has_as_member US_1943

Explanation: 

Minimal 

Generalization

M
ax

im
al

Gen
er

al
iza

tio
n



 20 

the variables V that lead to correct task reduction steps. That is, we have to learn the concept that 

represents the set of instances of the rule’s variables V for which the corresponding instantiation 

of the rule R is correct. We call this concept “the applicability condition of the rule R,” and 

Disciple-RKF learns it by using a plausible version space approach. That is, it considers the set 

of all the applicability conditions that are consistent with the known examples and their 

explanations and it reduces this set as new examples and additional explanations are found. 

Moreover, as in the candidate elimination algorithm, this version space is represented by a 

plausible lower bound and by a plausible upper bound. 

The initial plausible version space condition for the rule R is determined as follows. First 

one determines the instance of this condition, IC, corresponding to the initial example, as shown 

in the left hand side of Figure 6: 

IC: ?O1 is Allied_Forces_1943    [8] 
  has_as_member ?O2 

?O2 is US_1943 

Notice that this condition includes the feature “has_as_member” from the explanation of 

the example. This is an essential feature of the objects from this example and, for the same 

reason as in the case of explanation-based learning (Mitchell et al., 1986, DeJong and Mooney, 

1986), will significantly reduce the number of examples needed for learning. 

Then one generalizes IC in two different ways to generate the two bounds of the version 

space. The plausible lower bound of the version space is the set of the least general 

generalizations of IC which includes no instance. The least general concepts from the object 

ontology that cover Allied_Forces_1943 are opposing_force and 

equal_partner_multi_state_alliance. However, Allied_Forces_1943 has the feature 

has_as_member, and therefore, any of its generalization should be in the domain of this feature, 



 21 

which happens to be mulri_member_force. As a consequence, the set of the minimal 

generalizations of Allied_Forces_1943 is given by the following expression: 

{opposing_force, equal_partner_multi_state_alliance} ∩ {multi_member_force} =  

= {equal_partner_multi_state_alliance} 

Similarly (but using the range of the has_as_member feature, which is force), one 

determines the set of the minimal generalizations of US_143 as {single_state_force}. 

As a consequence, the plausible lower bound condition is: 

PLB: ?O1 is equal_partner_multi_state_alliance   [9] 
  has_as_member ?O2 

?O2 is single_state_force 

The reason the lower bound does not contain any instance is that the learned rule will be 

used by Disciple in other scenarios (such as Afghanistan_2001_2002), where the instances from 

Sicily_1943 do not exist, and Disciple-RKF would not know how to generalize them. On the 

other hand, we also do not claim that the concept to be learned is more general than the lower 

bound, as discussed in section x and illustrated in Figure 4. 

Using a similar procedure (but considering the most general generalizations of the 

instances and constants from the example and its explanation), Disciple-RKF determines the 

plausible upper bound condition [10] and generates the rule from the right hand side of Figure 6. 

PUB: ?O1 is multi_member_force     [10] 
  has_as_member ?O2 

?O2 is force 

The last step of the rule learning process is to analyze the generated rule. For instance, the 

agent may determine that a variable from the THEN part of a rule is not linked to any variable 

from the IF part of the rule. This is indicative of a rule which was learned based on an 

incomplete explanation, causing the agent to reinitiate the explanation generation process. 



 22 

Sometimes the missing explanation is so obvious to the expert that it is simply ignored, as in the 

following instance: “US_1943 has_as_government government_of_US_1943.” The agent will 

automatically select such an explanation if it provides a link to an unconstrained variable. 

Sometimes, even when all the rule’s variables are linked, the number of rule instances may still 

be very large. In such a case the agent will attempt to identify which variables are the least 

constrained and will attempt to further constrain them by proposing additional explanation 

pieces. 

Notice that Disciple-RKF succeeded to learn a reasonable rule from only one example 

and its explanation, a rule that may be used by Disciple in the problem solving process. Indeed, it 

will apply the rule to reduce a current task if any of its plausible bound conditions is satisfied. 

Rule 4 has only one concept in its plausible upper bound, and also one concept in the plausible 

lower bound. In general, however, each bound may contain more than one concept, as discussed 

in section x and illustrated in Figure 4. We say that the plausible lower bound condition covers 

an example if all the alternative concepts from this bound covers the instances from the example. 

On the contrary, we say that the plausible upper bound condition covers an example if at least 

one of the alternative concepts from this bound covers the example. 

6.2. Rule Refinement 

As Disciple-RKF learns new rules from the expert, the interaction between the expert and 

Disciple evolves from a teacher-student interaction toward an interaction where both collaborate 

in solving a problem. During this mixed-initiative problem solving phase, Disciple learns not 

only from the contributions of the expert, but also from its own successful or unsuccessful 

problem solving attempts, which lead to the refinement of the learned rules. At the same time, 

Disciple may extend the object ontology with new objects and features.  



 23 

The rule refinement problem and methods are presented in Tables 3, 4 and 5. The result 

of the rule learning process described in Table 2 and illustrated above is a rule with a main 

plausible version space condition. During rule refinement, however, the rule may accumulate 

several “except when” plausible version space conditions. For that reason, Tables 3 and Table 4 

assume that the rule R to be refined, based on the example E, has both a partially learned main 

condition and a partially learned “except when” condition. These methods are extended naturally 

when there are several such conditions. Figure 8 shows an abstract representation of the rule’s 

conditions. The new (positive or negative) example of the rule (and of the rule’s condition) may 

be situated in one of several relevant regions, as indicated in Figure 7. The way the rule is refined 

depends on the type of the example and the region in which it is situated, as described in Tables 

3 and 4. In the following we will illustrate these methods. 

GIVEN: 
• A plausible version space task reduction rule R. 
• A positive or a negative example E of the rule (i.e. a correct or an incorrect task reduction 

step that has the same IF and THEN tasks as R). 
• A knowledge base that includes an object ontology and a set of task reduction rules. 
• A subject matter expert that understands why the task reduction step is correct or incorrect 

and can answer the agent’s questions. 
 
DETERMINE: 
• A refined rule that covers the example if it is positive, or does not cover the example if it 

is negative. 
• An extended object ontology (if needed for rule refinement). 

Table 3: The Refinement Problem. 



 24 

As indicated in Figure 5, Disciple-RKF applied Rule 4 to reduce the task “Determine a 

center of gravity for a member of European_Axis_1943,” generating an example that is covered 

by the plausible upper bound condition of the rule. This reduction was accepted by the expert as 

correct. Therefore, Disciple generalized the plausible lower bound condition to cover it. For 

instance, European_Axis_1943 is a multi_member_force, but it is not an 

equal_partner_multi_state_alliance. It is a dominant_partner_multi_state_alliance dominated by 

Germany_1943. As a consequence, Disciple-RKF automatically generalizes the plausible lower 

bound condition of the rule to cover this example. The refined rule is shown in the left-hand side 

of Figure 8. This refined rule is then generating the task reduction from the bottom part of Figure 

5. Although this example is covered by the plausible lower bound condition of the rule, the 

expert rejects the reduction as incorrect. This shows that the plausible lower bound condition is 

1. If the positive example E is covered by ML and is not covered by XU (case 1 in Figure 7), 
then the rule does not need to be refined because the example is correctly classified as 
positive by the current rule. 
 
2. If E is covered by MU, but it is not covered by ML and XU (case 2 in Figure 7), then 
minimally generalize ML to cover E and remain less general than MU. Remove also from 
MU the elements that do not cover E. 
 
3. If E is not covered by MU (cases 3, 4, and 5 in Figure 7), or if E is covered by XL (cases 5, 
6, and 7 in Figure 7), then keep E as a positive exception of the rule. 
 
4. If E is covered by ML and XU, but it is not covered by XL (case 8 in Figure 7), then 
interact with the expert to find an explanation of the form: “The task reduction step is correct 
because Ii is Ci,” where Ci is a concept from the ontology. If such an explanation is found, 
then XU is minimally specialized to no longer cover Ci. Otherwise, E is kept as positive 
exception. 
 
5. If E is covered by MU and XU, but it is not covered by ML and XL (case 9 in Figure 7), 
then minimally generalize ML to cover E and remain less general than MU. Also remove 
from MU the elements that do not cover E. Then continue as in step 4. 

Table 4: Rule refinement with a positive example. 



 25 

not more general than the concept to be learned (as it would have been the case in the classical 

candidate elimination algorithm) and it would need to be specialized. 

This rejection of the reduction proposed by Disciple-RKF initiates an explanation 

generation interaction during which the expert will have to help the agent understand why the 

reduction step is incorrect. The explanation of this failure is that Finland_1943 has only a minor 

military contribution to European_Axis_1943 and cannot, therefore, provide the center of gravity 

of this alliance. The actual failure explanation (expressed with the terms from the object 

ontology) has the form:  

“Finaland_1943 has_as_military_contribution military_contribution_of_Finaland_1943 is 

minor_military_contribution” 

Based on this failure explanation, Disciple_RKF generates a plausible version space 

except when condition and adds it to the rule, as indicated in the right hand side of Figure 8. In 

1. If the negative example E is covered by ML and it is not covered by XU (case 1 in Figure 
7), then interact with the subject matter expert to find an explanation of why E is a wrong task 
reduction step. If an explanation EX is found, then generate a new Except When plausible 
version space condition and add it to the rule. Otherwise, keep E as a negative exception. 
 
2. If E is covered by MU but it is not covered by ML and by XU (case 2 in Figure 7) then 
interact with the expert to find an explanation of why E is a wrong task reduction step. If an 
explanation EX is found and it has the form “Ii is not a Ci,” where Ci is a concept covered by 
MU, then specialize MU to be covered by Ci. Otherwise, if another type of explanation EX is 
found then learn a new Except When condition based on it, and add this condition to the rule. 
 
3. If E is not covered by MU (cases 3, 4, 5 in Figure 7), or it is covered by XL (cases 5, 6, 7 in 
Figure 7), then the rule does not need to be refined because the example is correctly classified 
as negative by the current rule. 
 
4. If E is covered by ML and XU but it is not covered by XL (case 8 in Figure 7), or E is 
covered by MU and XU but it is not covered by ML and XL (case 9 in Figure 7), then 
minimally generalize XL to cover E and specialize XU to no longer include the concepts that 
do not cover E.  

Table 5: Rule refinement with a negative example. 



 26 

the future, this rule will only apply to situations where the main condition is satisfied and the 

except when condition is not satisfied.  

Notice that the addition of the except when condition specializes both bounds of the 

applicability condition of the rule. Other types of failure explanations may lead to different 

modifications of Rule 4. For instance, the failure explanation may have had the form 

“Finland_1943 is not a major_ally,” if “major_ally” would have been part of the object ontology 

(which it is not). In such a case, Disciple-RKF would not add an except when condition but it 

would specialize both bounds of the main condition to cover only “major_ally.” Yet another 

possibility is to find an additional feature of the positive examples of the rule which is not a 

feature of the current negative example. This feature would then be added to the corresponding 

object from the main condition (both in the upper bound and in the lower bound). Additional 

negative examples may lead to additional except when conditions and specializations of the main 

condition.  

Figure 7: Possible regions for a new (positive or negative) example of a rule. 

Universe of
Instances

MU: Main Condition
Plausible Upper Bound 

ML: Main Condition
Plausible Lower Bound

.

..

.

.

...
.

XU: Except When Condition
Plausible Upper Bound

XL: Except When Condition
Plausible Lower Bound

3

4

5

6

7

8

9

1

2 Universe of
Instances

MU: Main Condition
Plausible Upper Bound 

ML: Main Condition
Plausible Lower Bound

.

..

.

.

...
.

XU: Except When Condition
Plausible Upper Bound

XL: Except When Condition
Plausible Lower Bound

3

4

5

6

7

8

9

1

2



 27 

It may be the case that the actual explanation of an example contains elements that are 

not part of the object ontology. In such situations, Disciple-RKF elicits these elements from the 

expert and adds them to the ontology as new concepts or new features. Thus the learning process 

is performed in an evolving representation space in which the object ontology (which is used as 

the generalization hierarchy for learning) may be modified at any time. If the ontology is 

modified, the learned rules may no longer be correct. Therefore, the rules need to be relearned. 

This can be automatically done if the system keeps the examples and the explanations from 

which the rules were learned. However, different examples and explanations of a rule contain 

instances that existed in different scenarios (e.g. World War II or Afghanistan 2001-2002). 

Determine a center of gravity for a 
member of a force

The force is ?O1

Determine a center of gravity for a force
The force is ?O2

Plausible Lower Bound Condition

?O1 is multi_state_alliance
has_as_member ?O2 

?O2 is single_state_force

Plausible Upper Bound Condition

?O1 is multi_member_force
has_as_member ?O2 

?O2 is force

Rule 4 after Negative Example #3

Main Condition

Plausible Lower Bound Condition

?O2 is single_state_force
has_as_military_contribution ?O3 

?O3 is minor_military_contribution

Plausible Upper Bound Condition

?O2 is force
has_as_military_contribution ?O3 

?O3 is minor_military_contribution

Except When Condition

Determine a center of gravity for a 
member of a force

The force is ?O1

Determine a center of gravity for a force
The force is ?O2

Plausible Lower Bound Condition

?O1 is multi_state_alliance
has_as_member ?O2 

?O2 is single_state_force

Plausible Upper Bound Condition

?O1 is multi_member_force
has_as_member ?O2 

?O2 is force

Rule 4 after Positive Example #2
IF

Main Condition

THEN

IF

THEN

Figure 8: Refinements of Rule 4 



 28 

Therefore, Disciple keeps minimal generalizations of the examples and explanations that do not 

contain any instance and use these minimally generalized examples and explanations to 

regenerate the rules when the object ontology changes 

 

7. DEPLOYMENT AND AGENT TRAINING EXPERIMENTS  

Successive versions of Disciple-RKF were used in two courses at the US Army War College 

since 2001, while still under research and development, becoming part of their regular syllabus 

(Tecuci et al., 2002a; 2002b; 2004a). For the “Case Studies in Center of Gravity Analysis” 

course, which is offered twice a year, Disciple-RKF was taught based on the expertise of Prof. 

Jerome Comello, the course’s instructor. Then the students used Disciple-RKF as an intelligent 

assistant that helped them to develop a center of gravity analysis of a war scenario. This 

demonstrates that the Disciple approach can be used to develop agents that have been found to 

be useful for a complex military domain. 

 In the second course, “Military Applications of Artificial Intelligence,” which was 

offered once a year between 2001 and 2003, the students (who were subject matter experts at the 

rank of lieutenant colonel or colonel) taught personal Disciple-RKF agents their own expertise in 

center of gravity determination and then evaluated both the developed agents and the 

development process. Figure 9 presents the most complex of these experiments, performed in 

Spring 2003 (Tecuci et al., 2004b). 

 Before starting the experiment, Disciple-RKF was trained to identify leaders as center of 

gravity candidates. The knowledge base of this agent contained the definitions of 432 concepts 

and features and 18 task reduction rules. However, the agent had no knowledge of how to test the 

identified candidates. We then performed a joint domain analysis and ontology development 



 29 

with all the experts by considering the example of testing whether Saddam Hussein, in the Iraq 

2003 scenario, would have all the required critical capabilities to be the center of gravity for Iraq. 

Based on this domain analysis, we have extended the ontology of Disciple-RKF with the 

definition of 37 new concepts and features identified with the help of the experts. 

The 13 subject matter experts from the class were then grouped into five teams (of 2 or 3 

experts each), and each team was given a copy of the extended Disciple-RKF agent. Next, each 

team trained its agent to test whether a leader has one or two critical capabilities, as indicated in 

Figure 9. For instance, Team 1 trained its agent how to test whether a leader had the critical 

capabilities of staying informed and being irreplaceable. The training was done based on three 

scenarios (Iraq 2003, Arab-Israeli 1973, and War on Terror 2003) and the experts teaching 

Disciple-RKF how to test each strategic leader from these scenarios. As a result of the training 

Extended KB

stay informed

be irreplaceable
communicate be influential

Integrated KB

Initial KB

have support
be protected

be driving force

432 concepts and features, 18 rules
For COG identification for leaders

37 acquired concepts and
features for COG testing

COG identification and testing (leaders)

Domain analysis and ontology 

development (KE+SME)

Parallel KB development 

(SME assisted by KE)

KB merging (KE)

Knowledge 
Engineer (KE)

All subject matter 
experts (SME)

DISCIPLE-COG DISCIPLE-COG DISCIPLE-COG DISCIPLE-COG DISCIPLE-COG

Training scenarios:

Iraq 2003
Arab-Israeli 1973

War on Terror 2003

Team 1 Team 2 Team 3 Team 4 Team 5

5 features
10 rules

Learned features, tasks, rules

14 rules 2 features
19 rules

33 rules 3 features
23 rules

Unified 2 features
Deleted 4 rules
Refined 12 rules

Final KB:
+9 features ���� 478 concepts and features
+95 rules ����113 rules

DISCIPLE-COG

Testing scenario:

North Korea 2003
Correctness = 98.15%

5h 28min average training time / team

3.53 average rule learning rate / team

Extended KB

stay informed

be irreplaceable
communicate be influential

Integrated KB

Initial KB

have support
be protected

be driving force

432 concepts and features, 18 rules
For COG identification for leaders

37 acquired concepts and
features for COG testing

COG identification and testing (leaders)

Domain analysis and ontology 

development (KE+SME)

Parallel KB development 

(SME assisted by KE)

KB merging (KE)

Knowledge 
Engineer (KE)

All subject matter 
experts (SME)

DISCIPLE-COG DISCIPLE-COG DISCIPLE-COG DISCIPLE-COG DISCIPLE-COG

Training scenarios:

Iraq 2003
Arab-Israeli 1973

War on Terror 2003

Team 1 Team 2 Team 3 Team 4 Team 5

5 features
10 rules

Learned features, tasks, rules

14 rules 2 features
19 rules

33 rules 3 features
23 rules

Unified 2 features
Deleted 4 rules
Refined 12 rules

Final KB:
+9 features ���� 478 concepts and features
+95 rules ����113 rules

DISCIPLE-COG

Testing scenario:

North Korea 2003
Correctness = 98.15%

5h 28min average training time / team

3.53 average rule learning rate / team

Figure 9. Experiment of rapid knowledge base development by subject matter experts. 



 30 

performed by the experts, the knowledge base of each Disciple-RKF agent was extended with 

new object features and rules, as indicated in Figure 9. For instance, the knowledge base of the 

agent trained by Team 1 was extended with 5 features and 10 task reduction rules. The average 

training time per team was 5 hours and 28 minutes and the average rule learning rate per team 

was 3.53 rules/hour. This included time spent in all the agent training activities (i.e., specifying 

the three training scenarios, modeling experts’ reasoning, rule learning, mixed-initiative problem 

solving, and rule refinement). 

After the training of the 5 Disciple-RKF agents, their knowledge bases were merged by a 

knowledge engineer, who used the knowledge base merging tool of Disciple-RKF. The 

knowledge engineer also performed a general testing of the integrated knowledge base, in which 

he included the 10 features and 99 rules learned. During this process, two semantically 

equivalent features were unified, 4 rules were deleted, and 12 other rules were refined by the 

knowledge engineer. The other 8 features and 83 rules learned were not changed. Most of the 

modifications were done to remove rule redundancies or to specialize overly general rules.  

Next, each team tested the integrated agent on a new scenario (North Korea 2003) and 

was asked to judge the correctness of each reasoning step performed by the agent, but only for 

the capabilities for which that team performed the training of the agent. The result was 98.15% 

correctness. Moreover, at the end of the experiment, 7 experts strongly agreed, 4 agreed, 1 was 

neutral, and 1 disagreed with the statement “I think that a subject matter expert can use Disciple 

to build an agent, with limited assistance from a knowledge engineer”.  

This is the first time that such an agent training and knowledge bases merging experiment 

has been performed, and the obtained results support the claim that the Disciple learning-based 

approach can be used to develop complex knowledge-based agents. 



 31 

 

8. RELATED RESEARCH AND DISCUSSION 

To our knowledge, Disciple-RKF, as a whole, is quite unique, both in the field of Machine 

Learning and in the field of Knowledge Acquisition, and we are not aware of any other system 

that is similar in terms of capabilities and methods to achieve them. However, some of its aspects 

can be compared with other systems. For instance, from the point of view of its general approach 

to learning, Disciple-RKF is mostly related to the older work on apprenticeship learning 

(DeRaedt 1991; Mahadevan et al. 1993; Mitchell et al., 1985; Tecuci 1988; Wilkins 1990). 

However, none of these older systems have the level of maturity and scalability required for 

practical applications. Nor are they integrated tools for building end-to-end knowledge-based 

agents, going through all the phases of agent development, including modeling expert’s 

reasoning, ontology development and learning, and mixed-initiative problem solving and 

learning. The type of user was not a concern of these older apprentice systems, while Disciple-

RKF was specially developed to allow a subject matter expert who does not have prior computer 

science or knowledge engineering experience, to train it. This was achieved by using multiple 

interactions with the expert and using multistrategy learning methods that incorporate learning 

from examples, learning from explanations, and learning by analogy and experimentation. 

 Because the idea of version spaces plays such a crucial role in Disciple-RKF, we can also 

compare it with other systems based on this general approach, such as (Mitchell et al., 1983; 

Hirsh, 1989; Sebag, 1996 ). We are again not aware of any system based on the version space 

representation that can deal with complex applications. One cause of this is the combinatorial 

explosion of the bounds of the version space. Disciple is able to avoid this combinatorial 

explosion because of the use of the explanations that identify the essential features of the 



 32 

concepts to be learned. Another difference is that Disciple-RKF can learn an approximation of a 

concept even if the actual concept is not representable in its language, and can learn concepts 

with exceptions. One of our future research direction with respect to the plausible version space 

representation is the use of disjunctions and negations in the plausible version spaces of 

individual variables, such as ?O1 in Figure x, along the lines already investigated by Boicu 

(2002). This will allow Disciple to learn the best approximations of the concepts, when they are 

not representable.  

 Finally, Disciple-RKF can be compared with the tools for building knowledge-based 

systems, such as CYC (Lenat, 1995), EXPECT (Kim and Gil, 1999), or Loom (MacGregor, 

1991). These tools make very little use of machine learning, while learning plays a crucial role in 

Disciple-RKF. Although Disciple-RKF has not been directly compared with these tools on the 

same problems, two previous versions of Disciple, Disciple-WA (Tecuci et al., 1999) and 

Disciple-COA (Boicu et al., 2000; Tecuci et al., 2001), have been compared with these tools, as 

part of the DARPA’s High Performance Knowledge Bases program (Cohen et al., 1998), and 

demonstrated both higher knowledge acquisition rates, and better performance of the resulting 

systems. Rule 4 in Figure 8 helps explain why Disciple performed so well. In the case of the 

other systems, a knowledge engineer needed to manually define and debug the problem solving 

rules. With Disciple, the domain expert (possibly assisted by a knowledge engineer) needs only 

to define specific reductions like those in Figure 5, because Disciple will learn and refine the 

corresponding rules. 

 There are, however, many ways in which Disciple-RKF can still be considerably 

improved. For instance, one needs to develop more powerful methods for helping the expert to 

express his or her reasoning process using the task reduction paradigm, along the path opened by 



 33 

the Modeling Advisor described in (Boicu, 2002). Our agent training experiments have also 

revealed that the mixed-initiative learning methods of Disciple-RKF could be significantly 

empowered by developing the natural language processing capabilities of the system. More 

powerful ontology learning methods are also needed (Stanescu et al., 2003). Finally, because the 

expert who teaches Disciple-RKF has no formal training in knowledge engineering, the 

knowledge pieces learned by the agent and the knowledge base itself will not be optimally 

represented, and will require periodic revisions by the knowledge engineer. Examples of 

encountered problems with the knowledge base are semantic inconsistencies within a rule, and 

the violation of certain knowledge engineering principles. It is therefore necessary to develop 

mixed-initiative knowledge base reformulation and optimization methods to identify and correct 

such problems in the knowledge base.  

 

ACKNOWLEDGEMENTS 

This research was done in the Learning Agents Center of George Mason University and was 

sponsored by several US Government agencies, including the Defense Advanced Research 

Projects Agency, the Air Force Research Laboratory, the Air Force Office of Scientific Research, 

and the US Army War College. 

 

REFERENCES 

Boicu C., Tecuci G., Boicu M., Marcu D. 2003. "Improving the Representation Space through 

Exception-Based Learning," in Proceedings of the 16th International FLAIRS 

Conference (FLAIRS-2003), Special Track on Machine Learning, May 2003, Key West, 

Florida. AAAI Press, Menlo Park, CA, pp. 336-340.  



 34 

Boicu, M. 2002. Modeling and Learning with Incomplete Knowledge, PhD dissertation. George 

Mason University, Fairfax, Virginia, USA. 

Boicu M., Tecuci G., Marcu D., Bowman M., Shyr P., Ciucu F., and Levcovici C. 2000. 

Disciple-COA: From Agent Programming to Agent Teaching, Proceedings of the 

Seventeenth International Conference on Machine Learning, Stanford, CA, Morgan 

Kaufmann. 

Boicu M., Tecuci G., Stanescu B., Marcu D., Barbulescu M., Boicu C. 2004. "Design Principles 

for Learning Agents," in Proceedings of AAAI-2004 Workshop on Intelligent Agent 

Architectures: Combining the Strengths of Software Engineering and Cognitive Systems, 

July 26, San Jose, AAAI Press, Menlo Park, CA.   

Bowman, M. 2002. A Methodology for Modeling Expert Knowledge that Supports Teaching 

Based Development of Agents, PhD dissertation. George Mason University, Fairfax, 

Virginia, USA. 

Clausewitz, C.V. 1832. On War, translated and edited by M. Howard and P. Paret. Princeton, NJ: 

Princeton University Press, 1976. 

Cohen P., Schrag R., Jones E., Pease A., Lin A., Starr B., Gunning D., & Burke M. 1998. The 

DARPA High-Performance Knowledge Bases project, AI Magazine, 19, 25-49.  

DeJong, G. and Mooney, R.J. 1986. "Explanation-Based Learning: An Alternative View," 

Machine Learning, Vol. 1, pp. 145-176.  

De Raedt L. 1991. Interactive Concept Learning. Ph.D. Thesis, Catholic University of Leuven. 

Giles, P.K., and Galvin, T.P. 1996. Center of Gravity: Determination, Analysis and Application. 

CSL, U.S. Army War College, PA: Carlisle Barracks. 



 35 

Hirsh, H. 1989. "Incremental Version-space Merging: A General Framework for Concept 

Learning," Doctoral dissertation, Stanford University. 

Kim, J. & Gil, Y. 1999. Deriving expectations to guide knowledge base creation. Proceedings of 

the Sixteenth National Conference on Artificial Intelligence and the Eleventh Conference 

on Innovative Application of Artificial Intelligence (pp. 235-241). Menlo Park, CA: 

AAAI Press. 

Lenat, D.B. 1995. CYC: a large-scale investment in knowledge infrastructure. Communications 

of Association for Computing Machinery, 38, 33-38. 

Mahadevan, S., Mitchell, T., Mostow, J., Steinberg, L. & Tadepalli, P. 1993. An apprentice 

based approach to knowledge acquisition, Artificial Intelligence, 64, 1-52.  

Michalski R.S. and Tecuci G. (eds). 1994. "Machine Learning: A Multistrategy Approach," vol. 

IV, 782 pages, Morgan Kaufmann, San Mateo. 

Mitchell, T.M. 1978. "Version Spaces: an Approach to Concept Learning," Doctoral 

Dissertation, Stanford University. 

Mitchell, T.M., Keller, T. and Kedar-Cabelli, S. 1986. "Explanation-Based Generalization: A 

Unifying View," Machine Learning, Vol. 1, pp. 47-80. 

Mitchell T., Mahadevan S. & Steinberg L. 1985. LEAP: a Learning Apprentice System for VLSI 

Design, Proc. IJCAI-85, Los Angeles, 573-580.  

Mitchell, T.M., Utgoff P.E., Banerji R. 1983. Learning by Experimentation: Acquiring and 

Refining Problem-Solving Heuristics, in Michalski, R., Carbonell, J., and Mitchell, T. 

(eds.), Machine Learning, Vol. I, Morgan Kaufmann, San Mateo, CA. 



 36 

MacGregor, R. 1991. The evolving technology of classification-based knowledge representation 

systems. In Sowa, J. ed. Principles of Semantic Networks: Explorations in the 

Representations of Knowledge, (pp. 385-400). San Francisco, CA: Morgan Kaufmann. 

Nilsson, N.J. 1971. Problem Solving Methods in Artificial Intelligence, NY: McGraw-Hill.  

Powell G.M. and Schmidt C.F. 1988. A First-order Computational Model of Human Operational 

Planning, CECOM-TR-01-8, US Army CECOM, Fort Monmouth, New Jersey, August. 

Sebag M. 1996. Delaying the Choice of Bias: A Disjunctive Version Space Approach. In Saitta, 

L. (editor) Machine Learning – Proceedings of the Thirteenth International Conference 

(ICML' 96), pp. 444-452. San Francisco, California: Morgan Kaufmann Publishers, Inc. 

Stanescu B., Boicu C., Balan G., Barbulescu M., Boicu M., Tecuci G. 2003. Ontologies for 

Learning Agents: Problems, Solutions and Directions. In Proceedings of the IJCAI-03 

Workshop on Workshop on Ontologies and Distributed Systems, 75-82. Acapulco, 

Mexico, AAAI Press, Menlo Park, CA. 

Strange, J. 1996. Centers of Gravity & Critical Vulnerabilities: Building on the Clausewitzian 

Foundation So That We Can All Speak the Same Language. Quantico, Virginia, USA, 

Marine Corps University. 

Tecuci, G. 1988. Disciple: A Theory, Methodology and System for Learning Expert Knowledge, 

Thèse de Docteur en Science, University of Paris-South. 

Tecuci, G. 1998. Building intelligent agents: an apprenticeship multistrategy learning theory, 

methodology, tool and case studies. London: Academic Press. 

Tecuci, G., Boicu, M., Wright, K., Lee, S.W., Marcu, D. & Bowman, M. 1999. An integrated 

shell and methodology for rapid development of knowledge-based agents, Proceedings of 

the Sixteenth National Conference on Artificial Intelligence and the Eleventh Conference 



 37 

on Innovative Application of Artificial Intelligence (pp. 250-257). Menlo Park, CA: 

AAAI Press.  

Tecuci G., Boicu M., Bowman M., and Marcu D., with a commentary by Burke M. 2001. An 

Innovative Application from the DARPA Knowledge Bases Programs: Rapid 

Development of a High Performance Knowledge Base for Course of Action Critiquing. 

AI Magazine, 22, 2. AAAI Press, Menlo Park, California, 43-61. 

Tecuci G., Boicu M., Marcu D., Stanescu B., Boicu C., Comello J., Lopez A., Donlon J., 

Cleckner W. 2002a. "Development and Deployment of a Disciple Agent for Center of 

Gravity Analysis," in Proceedings of the Eighteenth National Conference  of Artificial 

Intelligence and the Fourteenth Conference on Innovative Applications of Artificial 

Intelligence, AAAI-02/IAAI-02, pp. 853 - 860, Edmonton, Alberta, Canada, AAAI 

Press/The MIT Press. Deployed Application Award. 

Tecuci G., Boicu, M., Marcu, D., Stanescu, B., Boicu, C., and Comello, J. 2002b. Training and 

Using Disciple Agents: A Case Study in the Military Center of Gravity Analysis Domain. 

AI Magazine 23(4) 51–68. 

Tecuci G., Aha D., Boicu M., Cox M., Ferguson G., and Tate A. (eds). 2003. Proceedings of the 

IJCAI-03 Workshop on Mixed-Initiative Intelligent Systems,  Acapulco, Mexico, 

August, 143 pg.  

Tecuci G., Boicu M., Marcu D., Stanescu B., Boicu C., Barbulescu M., 2004a. "A University 

Research Group Experience with Deploying an Artificial Intelligence Application in the 

Center of Gravity Analysis Domain," in Proceedings of AAAI-2004 Workshop on 

Fielding Applications of Artificial Intelligence, July 25, San Jose, AAAI Press, Menlo 

Park, CA. 



 38 

Tecuci G., Boicu M., Marcu D., Stanescu B., Boicu C., Barbulescu M. 2004b. "Parallel 

Knowledge Base Development by Subject Matter Experts" in Proceedings of the 14th 

International Conference on Knowledge Engineering and Knowledge Management, 

EKAW 2004, 5-8th October 2004 - Whittlebury Hall, Northamptonshire, UK, Springer-

Verlag.   

Wilkins, D.C. 1990. "Knowledge Base Refinement as Improving an Incorrect and Incomplete 

Domain Theory," in Machine Learning: An Artificial Intelligence Approach, Vol. 3, Y. 

Kodratoff and R.S. Michalski (Eds.), San Mateo, CA, Morgan Kaufmann. 

 

 

 


