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Abstract

Over the years we have developed the Disciple yheoethodology, and family of tools for
building knowledge-based agents. This approachistsna developing an agent shell that can
be taught directly by a subject matter expert, wag that resembles how the expert would teach
a human apprentice when solving problems in codjperal his paper presents the most recent
version of the Disciple approach and its implemgoman the Disciple-RKF system. Disciple-
RKF is based on methods farixed-initiative problem solvingvhere the expert solves the more
creative problems and the agent solves the moteneoanesintegrated teaching and learning
where the agent helps the expert to teach it, kyngselevant questions, and the expert helps the
agent to learn, by providing examples, hints anaanations, andhultistrategy learningwhere

the agent integrates multiple learning strategiesh as learning from examples, learning from
explanations, and learning by analogy, to learmftbe expert how to solves problems.
Disciple-RKF has been successfully applied to bl@éining and reasoning agents for military

center of gravity analysis, which are used in selvewsurses at the US Army War College.

Key Words. multistrategy apprenticeship learning, problenvisgj through task reduction,
mixed-initiative reasoning, plausible version sgacale learning, ontology, agent development,

military center of gravity analysis



1. INTRODUCTION

For almost 20 years we have performed researcleeslaping a theory and the associated
methodologies and tools for building agents thebiporate the knowledge of a subject matter
expert (Tecuci 1988, 1998; Boicu 2002).

Our approach to this problem, which we have cahedDisciple approach, consists in
developing a problem solving and learning agerntdha be taught directly by a subject matter
expert to become a knowledge-based assistant. Xegteshould be able to teach the agent how
to perform problem solving tasks in a way thatsilar to how the expert would teach a person.
For instance, the expert may show the agent haelie@ specific problems, and may help it to
understand the reasoning process. As the agenslganeral problem solving rules from these
problem solving examples and builds its knowledggeh the expert-agent interaction evolves
from a teacher-student interaction toward an icteya where both collaborate in solving a
problem. During this joint problem solving procetg agent learns not only from the
contributions of the expert, but also from its osutcessful or unsuccessful problem solving
attempts. This process is based on:

* mixed-initiative problem solving (Tecuci et al.,a¥), where the expert and the agent

solve problems in cooperation and the agent |gfaons the contributions of the expert;

* integrated learning and teaching, where the expps the agent to learn (for instance,

by providing examples, hints and explanations), thedagent helps the expert to teach it
(for instance, by asking relevant questions), and;

* multistrategy learning (Michalski and Tecuci, 1994here the agent integrates

complementary strategies, such as learning frormples, learning from explanations,

and learning by analogy, to learn general concapdsrules.



Over the years we have continuously extended apdowed the Disciple approach, which is
reflected in a sequence of increasingly more pav@roblem solving and learning agents from
the Disciple family of agents. The goal of this eafs to overview the knowledge
representation, problem solving and learning mettaidhe most recent member of this family,
Disciple-RKF, which has been developed as pati®DARPA’s Rapid Knowledge Formation
(RKF) program (Tecuci et al., 2001).

The next section introduces the military centegraivity analysis domain which was used as
the main application domain of Disciple-RKF andlpilovide examples for presenting Disciple-
RKF. Section 3 presents the general architectuisufiple-RKF, which integrates general
components (usable across many application domants$pecific components (developed for a
specific application domain to improve the usapiiihd the efficiency of the agent). Section 4
presents the task reduction paradigm, the genssblgm solving approach of Disciple-RKF,
which allows it to be used in a wide variety of dons (such as action planning, military course
of action critiquing, or center of gravity analysiand for several purposes (such as, modeling
the expert’s reasoning, mixed-initiative problenvsw, and agent teaching and learning).
Section 5 presents the knowledge representati@isofple-RKF, which is based on the concept
of plausible version space, allowing the ageneton with an evolving representation language
and to use partially learned knowledge in problehaisg. This sets the stage for presenting the
multistrategy learning methods of Disciple-RKF @tson 6. These methods integrate learning
from examples, learning from explanations, andiieay by analogy. Section 7 presents an
experiment with Disciple-RKF and its deploymentU& Army War College. The paper
concludes with a discussion of related researatectilimitations of Disciple-RKF and, the

main directions of future research.



2. SAMPLE APPLICATION DOMAIN:

MILITARY CENTER OF GRAVITY ANALYSIS
Military center of gravity analysis was used atallenge problem in the DARPA’s RKF
program to test the knowledge acquisition, learrming problem solving methods of Disciple-
RKF, and will be used in this paper to illustrdtern. The concept of center of gravity,
introduced by Karl von Clausewitz (1832), is fundantal to military strategy, denoting the
primary source of moral or physical strength, powareresistance of a force (Strange, 1996). The
most important objective of a force (state, allenmoalition, or group), in any type of conflict, i
to protect its own center of gravity while attadakithe center of gravity of its enemy. Therefore,
in the education of strategic leaders at all th®. \denior military service colleges, there is great
emphasis on the center of gravity analysis. Thayas requires a wide range of background
knowledge not only from the military domain, bus@from the political, psychosocial,
economic, geographic, demographic, historic, irggomal, and other domains (Giles and Galvin
1996). In addition, the situation, the adversaneslved, their goals, and their capabilities can
vary in important ways from one scenario to anotfhberefore, this is a very good example of
knowledge-intensive, expert problem solving, thBtisciple agent should be able to learn.

Our approach to center of gravity analysis, basethe work of Strange (1996) and Giles
and Galvin (1996), and developed with experts ftbenUS Army War College, consists of two
main phaseddentificationandtesting During the identification phase, center of gravit
candidates from different elements of power ofraddsuch as government, military, people,
economy) are identified. For instance, a strongde#s a center of gravity candidate with
respect to the government of a force. Then, dufiegesting phase, each candidate is analyzed

to determine whether it has all the critical captds that are necessary to be the center of



gravity. For example, a leader needs to be pradestay informed, communicate (with the
government, the military, and the people), be wrflial (with the government, the military, and
the people), be a driving force, have support (ftbengovernment, the military, and the people),
and be irreplaceable. For each capability, one s\aedetermine the existence of the essential
conditions, resources and means that are requyréaiab capability to be fully operative, and

which of these, if any, represent critical vulneliabs.

3. AGENT ARCHITECTURE
The architecture of Disciple-RKF includes the comgats from Figure 1, each implemented as a
set of collaborative agents (Boicu et al., 2004 €ore of the system is the learning agent shell,
which has the following domain-independent compasien

» A problem solving component based on the task temtuparadigm of problem solving.
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It includes a modeling agent that helps the usexpress his/her contributions to the
problem solving process, a mixed-initiative (stgpstep) problem solving agent, and an
autonomous problem solving agent.

A knowledge acquisition and learning componentafmguiring and refining the
knowledge of the agent, allowing a wide range arapions, including ontology import
(from external knowledge repositories, such as qlYéhat, 1995)), user definition of
knowledge base elements (through the use of editadrowsers), ontology learning,
and rule learning.

A knowledge base manager which controls the adoessd the updates of the
knowledge base. Each module of Disciple-RKF camrssthe knowledge base only
through the functions of the knowledge base manager

A windows based, domain-independent, graphical inserface.

The three components in the right hand side ofreiduare the typical domain dependent

components of a Disciple-RKF agent that was custethfor a specific application, such as

center of gravity analysis:

A customized problem solving component that extehddasic task-reduction
component in order to satisfy the specific probsaitving requirements of the

application domain.

Customized graphical user interfaces which ard barilthe specific Disciple-RKF agent
to allow the experts and the end users to commtenigih the agent as close as possible
to the way they communicate in their domains.

The knowledge base of the Disciple-RKF agent tbatains knowledge specific to the

center of gravity analysis domain.



The next sections present the knowledge represamtamd the problem solving and learning

methods implemented by these modules.

4. PROBLEM SOLVING

A Disciple-RKF agent performs problem solving tablgsusing the task reduction paradigm
(Nilsson 1971; Powell and Schmidt 1988). In thisgoligm, a complex problem solving task is
successively reduced to simpler tasks. Then thdisnk of the simplest tasks are found and
these solutions are successively combined intsahdion of the initial task, as illustrated in the
left hand side of Figure 2.

In the Disciple approach we have refined this galngtrategy so that it can be easily used
both by the expert (when teaching the agent or vadoartributing to the joint problem solving

process) and the agent (when solving a problem)dM/¢éhis by introducing questions and

task reduction step
A

solution composition step
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p
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A
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Figure 2: Problem-solving through task reductiod aolution composition.




answers that guide the task reduction procesfiyasated on the right hand side of Figure 2 and
discussed in more detail in (Bowman 2002). In thfed task reduction approach, finding a
solution of a problem solving task (e.g. dn the right hand side of Figure 2) becomes an
iterative process where, at each step, the expetih¢ agent, depending on who is doing the
problem solving) looks for some relevant informatfor solving T by asking a questionQ
The answer Aidentifies that piece of information and leadshe reduction of the current task
to simpler tasks (e.g..J. Alternative questions correspond to alternapix@blem solving
strategies. Multiple answers of a question (e ga & Ai1m) correspond to multiple solutions.
Solution composition (e.g. the composition ef.S... , Siminto S,) is also guided by questions
and answers.

Figure 8 illustrates the decomposition process attlexample from the center of gravity
analysis domain. In this example, the expert isvéhg the agent how to determine a center of
gravity candidate for the Sicily 1943 scenario (\Wd&iar 1l at the time of the invasion of the

island of Sicily by the allied forces).

5.LEARNABLE KNOWLEDGE REPRESENTATION
The knowledge base of Disciple-RKF is structuregd sm object ontology and a set of task
reduction rules and solution composition rules. ®hgct ontology is a hierarchical
representation of the objects from the applicatiomain. It represents the different kinds of
objects, the properties of each object, and ttaiosiships existing between objects. The object
ontology of Disciple-RKF for the center of gravilpmain contains 355 object concepts.

Moreover, a scenario such as the Sicily 1943 seenaed in this paper, is described with



around 900 facts (i.e. triplets of the form “objézture value”). A fragment of this object
ontology for the center of gravity domain is shawrkigure 3.

The object ontology is incomplete. There are rat¢cancepts and instances from the
application domain which are not represented. Mageahe representation of a given concept,
or instance, may be incomplete in the sense thimies not include all of its relevant properties
and relationships. This object ontology will beended by the agent during the problem solving
and learning process (Boicu et al., 2003).

In addition to the hierarchy of instances and cpteélustrated in Figure 3, the object
ontology also includes a hierarchy of featureghls hierarchy, for instance, the feature
“has_as_head_of government’ is a subfeature of ‘dmgolitical leader,” which is a
subfeature of “has_as_controlling_leader.” EacluieaF is characterized by a domain and a
range. The domain of F is a concept that represdintdjects that may have the feature F. The

range of F is a concept that represents all thsilplesvalues of F. The feature hierarchy for the

subconcept of ———»
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Figure 3. Fragment of the object ontology for teater of gravity domain.
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center of gravity domain contains 193 feature digdins.

The object ontology plays a crucial role in Diseigbeing at the basis of knowledge
representation, user-agent communication, probtauing), knowledge acquisition and learning.
Using the (object and feature) concepts from tHeatlmntology, one can define more complex
concepts as logical expressions involving theseepts. The basic representation unit (BRU)

for such a concept has the form {700 ,..., ?Q}, where each ?(has the structure indicated

by [1].
?2Q s concept [1]
featurg 2
1.:6,;6.1tur€a1 ?0n

Conceptis an object concept from the object ontologyumaeric interval, or a list of
strings, and ?@... ?Qy are distinct variables from the set {200, ... , ?Q} . For example,
the concept “the pair of entities ?&nd ?Q, where ?Qis an equal partner, multi-state alliance

that has, as one of its members;,,2@hich is a single-state force” is represente@xyyression

2].

?20, is equal_partners_multi_state_alliance [2]
has_as _member 320
?20, is single_state force

In general, a concept may be a conjunctive expessiform [3], meaning that any instance of
the concept satisfies BRU and does not satisfy B&tid ... and does not satisfy BRU
BRU & not BRU & ... & not BRU, [3]
However, instead of “not” we write “Except Wheng @lustrated in [4]. This concept

represents “the pair of entities ?&nd ?Q, where ?Q®is an equal partner multi-state alliance

11



that has, as one of its members;,2@hich is single-state force, except when ¥ single-state

force with a minor military contribution.”

?0, is equal_partners_multi_state alliance [4]
has_as _member 320

?0, is single_state force

Except When

20, is single_state force
has_as_military_contribution 30

?20; is minor_military_contribution

The object ontology is at the basis of the gemstabn language for learning. For
instance, a concept such as [2] may be generddizeedplacing an object concept from its
description (e.g. “equal_partners_multi_state_adieg) with a more general concept from the
ontology (e.g. “multi_state _alliance”). Other gealzation or specialization rules may be used
to generalize or specialize such concepts asnftamce, dropping or adding an object feature or
an Except When condition, generalizing a numbertinterval, or an interval to a larger
interval (Tecuci, 1998).

Partially learned concepts are represented asiplawersion spaces (Tecuci, 1998), as

illustrated in Figure 4. The plausible upper boohthis version space contains the two concepts

shown in [5].
20, is multi_member_force [5]
has _as_member 20
20, is force
and
?20, is opposing_force
has_as _member 320
?20, is force

Similarly, the plausible lower bound of this versigpace contains two concepts, one

where ?Qis a multi_state_alliance, and another one whergs?ah opposing_force. In the

12



current version of Disciple, the same features appeth in the upper bound and in the lower
bound (such as “has_as_member” in the example Figore 4).

The concept Eto be learned (see Figure 4)as,an approximation, less general than
one of the concepts from the plausible upper bounds Blso, agaimas an approximation, more
general thamny of the concepts from the plausible lower boundrimulearning, the two
bounds converge toward one another through sueeegsneralizations and specializations,
approximating g better and better. This is different from the w@rspaces introduced by
Mitchell (1978), wher@ne of the concepts from the upper bousdlways more general than
the concept to be learned (and the upper bound/&ésya specialized during learning), aaaly of
the concepts from the lower boursthlways less general than the concept to be learned (and the
lower bound is always generalized during learnifigfe major difference is that the version
spaces introduced by Mitchell (1978) are based conaplete representation space that includes
the concept to be learned. On the contrary, theesgmtation space for Disciple is based on an
incomplete and evolving object ontology, as mergtbabove. Therefore, Disciple addresses the
more complex and more realistic problem of learnimthe context of an evolving representation

space.

Universe of  , =~ Plausible _
Instances ¢ \ Upper Bound Plausible Upper Bound
?01 is {multi_member_force, opposing_force}
Plausible
Lower Bound

has_as member ?02
?02 is {force}

Plausible Lower Bound

?01 is {multi_state_ alliance, opposing force}
has_as_member ?02

?02 is {single_state_force}

Figure 4: A plausible version space for a partildgrned concept.
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The notion of plausible version space is fundanidatthe knowledge representation,
problem solving, and learning methods of Discipediscussed below and in section 6. All the
knowledge elements from the knowledge base aresepted using this construct and are
learned or refined by Disciple. For instance, DpeiRKF learns general feature definitions
from specific examples, the domains and the rang#dse partially learned features being
represented as plausible version spaces.

The knowledge base of Disciple-RKF also contaiskgaeduction rules and solution
composition rules that are learned from specif@neples of reductions or compositions. Figure
6 shows an example of a task reduction step anthgiereduction rule learned from it. The rule
is an IF-THEN structure that expresses under whiadlition a certain type of task may be
reduced to a simpler subtask (or to several subtasicase of other rules). The rule is
interpreted as follows: If the task to be solvediswe are asking the question Q, and if the
answer is A (or, equivalently, the applicabilitynciition of the rule is satisfied), then we can
reduce T to Ty;.

The rule in Figure 5 is a very simple one, withyoalMain Condition. In general,
however, in addition to a Main Condition, a learmelgé may have several Except When
Conditions (which should not be satisfied for thkerto be applicable), as well as positive and
negative exceptions. Thus, in general, the comdibfcthe rule is a concept of the form “BRU
except-when BRUL1 ... except-when BRUneaning that the rule may be applied for any
instance of the condition concept. The rule shawhigure 5 is only partially learned. Therefore,
instead of a single applicability condition, it replausible version space for the exact condition
to be learned. The knowledge base of Disciple-R#&ftains 368 reduction rules, all learned by

the agent. It also contains 269 composition rules.
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6. MIXED-INITIATIVE MODELING, LEARNING AND PROBLEM SOLVING

The Disciple approach covers all the phases oftadgrelopment and use. First, a knowledge
engineer works with a subject matter expert to bigwvan ontology for the application domain.
They use the ontology import module (to extractvaht ontology elements from existing
knowledge repositories) as well as the variouslogioeditors and browsers of Disciple-RKF.
The result of this knowledge base development pisage object ontology (see Figure 3) which
is complete enough to be used as a generalizagoarbhy for learning, allowing the expert to
teach the Disciple agent how to solve problemd) limiited assistance from a knowledge
engineer. The teaching process is illustrated gufié 6 and discussed in the following.

6.1. Rule Learning

The expert formulates an initial problem solvingktiasuch as “Determine a center of
gravity for the Sicily 1943 scenario,” (see Figbjeand shows the agent how to solve this task
by using the task reduction paradigm describe@atien 4. The expert uses natural language, as
if s/lhe would think aloud. S/he asks a questioateel to some piece of information which is
relevant to solving the current task. The answentifies that piece of information and leads the
expert to reduce the current task to a simpler faskn other cases, to several simpler tasks).
Figure 5 shows a sequence of task reduction dteps each of these steps the agent learns a
general task reduction rule. Table 1 and tablee8gmt the rule learning problem and method of
Disciple-RKF. They will be illustrated in the foldng.

Let us consider thestep from the task reduction tree in Figure 5,séme step also
shown also on the left hand side of Figure 6. Frioisitask reduction step, Disciple-RKF learned

the task reduction rule shown in the right hane sifiFigure 6.
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Figure 5: An illustration of mixed-initiative mode{j, problem solving, and learning.
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Table 1: The Rule Learning Problem.

GIVEN:

* An example of a task reduction step.

* A knowledge base that includes an object ontologlaset of task reduction rules.

* A subject matter expert that understands why tiiergexample is correct and may
answer agent’s questions.

DETERMINE:

» A plausible version space task reduction rule wisafpeneralization of the specific task
reduction step.

* An extended object ontology (if needed for rulethéag).

Rule learning is a mixed-initiative process betwtenexpert (who knows why the
reduction is correct and can help the agent to nataled this) and the Disciple-RKF agent (that
is able to generalize the task reduction exampteitarexplanation into a general rule, by using
the object ontology as a generalization langua@s process is based on a communication

protocol which takes into account that:

- It is easier for an expert to understand senteimc®e formal language of the agent
than it is to produce such formal sentences; and
- It is easier for the agent to generate formal seme than it is to understand

sentences in the natural language used by thetexper

The question and its answer from the task redudtiep represent the expert’s reason (or
explanation) for performing that reduction. Becatlsy are in natural language, the expert has
to help Disciple-RKF “understand” them in termgloé concepts and features from the object
ontology. Consider [6], the question and the andveen the example in Figure 6. Their meaning
in the object ontology is expressed as in [7]. \&k expression [7] the “explanation” of the

example.
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Table 2: The Rule Learning Method.

1. Explanation Generation

Identify a formal explanation EX of why the exam@és correct, through a mixed-initiative
interaction with the subject matter expert. Thelaxation is an approximation of the
meaning of the question and answer, expressedé@tbbjects and the features from the
object ontology. During the explanation generapoocess, new objects and features may pe
elicited from the expert and added to the objetblogy.

2. Variable Generation
Generate a variable for each instance, numbertand shat appears in the example and it
explanation. Then use these variables, the examptethe explanation, to create an instance
IC of the concept representing the applicabilitpaition of the rule to be learned. This is the
concept to be learned as part of rule learning.

3. Rule Generation

Generate the tasks, question, and answer of tedyuteplacing each instance or constant
from the example E with the corresponding varig@eerated in step 2. Then generate the
plausible version space of the applicability coioditof the rule. The concept represented b
this condition is the set of instances and consttnat produce correct instantiations of the
rule. The plausible lower bound of this versioncgps the minimally general generalizatior]
of IC determined in step 2, generalization whicksloot contain any instance. The plausible
upper bound of this version space is the set ofrteimally general generalizations of IC.

<

5. Rule Analysis

If there is any variable from the THEN part of ¢erwhich is not linked to some variable
from the IF part of the rule, or if the rule hase toany instances in the knowledge base, then
interact with the expert to extend the explanatibthe example and update the rule if new
explanation pieces are found. Otherwise end theelealrning process.

14

“Which is a member of Allied_Forces 1943? US 1943” [6]

“Allied_Forces 1943 has_as_member US 1943” [7]

While a subject matter expert can understand trenimg of the above formal
expression, s/he cannot easily define it for trenafecause s/he is not a knowledge engineer.
For instance, s/he would need to use the formagluage of the agent. But this would not be
enough, as the expert would also need to knowdhses of the potentially many thousands of
concepts and features from the agent’s ontologgrédtbre, the agent will hypothesize plausible

meanings of the question-answer pair by using gmptural language processing, analogical
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reasoning with previously learned rules, and gdreraristics, and will express them as
explanation fragments. In general, an explanatiagrhent identified by the agent, such as [7], is
a relationship (or a relationship chain) involvingtances, concepts, and constants from the task
reduction step and from the knowledge base. Thetagé then propose these explanation
pieces to the expert, ordered by their plausihistythat the expert can select the ones the kas th
meaning of the question-answer pair. The expert at&y help the agent to propose the right
explanation pieces by proving hints, such as pogntdo a relevant object that should be part of
the explanation.

Using the example and its explanation, Disciple-R¥FFgenerate the task reduction
rule from the right hand side of Figure 6. First tgent will generate a variable for each
instance, number, or string that appears in thexpl@and its explanation. Then it will use these
variables V to generalize the task reduction exaripinto an IF-THEN rule R, by replacing
each instance or concept with the correspondinigiviax.

The next step in the rule learning process is terd@ne which are the instantiations of

Example 1 of a task reduction step Rule 4 learned from Example 1
We need to E
Determine a center of gravity for a Determine a center of gravity for a member
member of Allied Forces 1943 of 201
— - Question: Which is a member of 201 ?
(Wthh is a member of Allied_Forces_1943? > Answer: 202

US_1943 ) Main Qondition _
Plausible Upper Bound Condition
Therefore we need to

> . .
|Determine a center of gravity for US_ 1943 | 701 :qsas n;:ltrln_?rstr)r:iergg)zrce

1’?02 is force
([Plausible Lower Bound Condition
?01 is

< equal_partner_multi_state_alliance
has_as_member 2?02

IEpranation:
(AIIied_Forces_1943 has_as_member US_1943 )

L J

Instantiated Condition
?01 is Allied_Forces_1943 )
has_as_member 2?02 \\I\'\“‘?‘:\;la(\O“ L|?02 is single_state force

\!
202 is US_1943 cen® THEN
[Determine a center of gravity for 202 |

Figure 6: An example of a task reduction step &edtle learned from it.
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the variables V that lead to correct task reducsi@ps. That is, we have to learn the concept that
represents the set of instances of the rule’s bimsaV for which the corresponding instantiation
of the rule R is correct. We call this concept “#pplicability condition of the rule R,” and
Disciple-RKF learns it by using a plausible versgpace approach. That is, it considers the set
of all the applicability conditions that are conerg with the known examples and their
explanations and it reduces this set as new exanaple additional explanations are found.
Moreover, as in the candidate elimination algorittims version space is represented by a
plausible lower bound and by a plausible upper doun

The initial plausible version space condition foe tule R is determined as follows. First
one determines the instance of this conditioncteresponding to the initial example, as shown
in the left hand side of Figure 6:

IC: ?01 is Allied_Forces 1943 [8]
has_as_member ?202
?02 is US_ 1943

Notice that this condition includes the features'ha@s _member” from the explanation of
the example. This is an essential feature of thectdfrom this example and, for the same
reason as in the case of explanation-based leafWiitchell et al., 1986, DeJong and Mooney,
1986), will significantly reduce the number of exales needed for learning.

Then one generalizes IC in two different ways toagate the two bounds of the version
space. The plausible lower bound of the versiogesjmthe set of the least general
generalizations of IC which includes no instandee Teast general concepts from the object
ontology that cover Allied_Forces 1943 are opposioge and
equal_partner_multi_state alliance. However, Alliedrces_1943 has the feature

has_as_member, and therefore, any of its genetiahizshould be in the domain of this feature,
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which happens to be mulri_member_force. As a carsacg, the set of the minimal
generalizations of Allied_Forces 1943 is given ling following expression:
{opposing_force, equal_partner_multi_state _allidnaégdmulti_member_force} =
= {equal_partner_multi_state_alliance}
Similarly (but using the range of the has_as_merféadure, which is force), one
determines the set of the minimal generalizatidid® 143 as {single_state force}.

As a consequence, the plausible lower bound camdis:

PLB: ?01 is equal_partner_multi_state_alliance 1 [9
has_as_member ?202
?02 is single_state force

The reason the lower bound does not contain atgnins is that the learned rule will be
used by Disciple in other scenarios (such as Afggtam 2001 2002), where the instances from
Sicily_1943 do not exist, and Disciple-RKF would kaow how to generalize them. On the
other hand, we also do not claim that the conaepetlearned is more general than the lower
bound, as discussed in section x and illustratédgare 4.

Using a similar procedure (but considering the ngesteral generalizations of the
instances and constants from the example andplamation), Disciple-RKF determines the

plausible upper bound condition [10] and genertitesule from the right hand side of Figure 6.

PUB: ?01 is multi_member_force [10]
has_as_member ?02
?02 is force

The last step of the rule learning process is tiyae the generated rule. For instance, the
agent may determine that a variable from the THBEN @f a rule is not linked to any variable
from the IF part of the rule. This is indicativeafule which was learned based on an

incomplete explanation, causing the agent to liateithe explanation generation process.
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Sometimes the missing explanation is so obviodkda@xpert that it is simply ignored, as in the
following instance: “US_1943 has_as_government gowent_of US_1943.” The agent will
automatically select such an explanation if it jdeg a link to an unconstrained variable.
Sometimes, even when all the rule’s variablesiaketl, the number of rule instances may still
be very large. In such a case the agent will attemlentify which variables are the least
constrained and will attempt to further constréi@nh by proposing additional explanation
pieces.

Notice that Disciple-RKF succeeded to learn a nealle rule from only one example
and its explanation, a rule that may be used bygiples in the problem solving process. Indeed, it
will apply the rule to reduce a current task if ariyts plausible bound conditions is satisfied.
Rule 4 has only one concept in its plausible ufyoemnd, and also one concept in the plausible
lower bound. In general, however, each bound mayatm more than one concept, as discussed
in section x and illustrated in Figure 4. We sagttthe plausible lower bound condition covers
an example iéll the alternative concepts from this bound covesdribtances from the example.
On the contrary, we say that the plausible uppenticondition covers an example if at least
one of the alternative concepts from this boundecathe example.

6.2. Rule Refinement

As Disciple-RKF learns new rules from the expédrg interaction between the expert and
Disciple evolves from a teacher-student interactimmard an interaction where both collaborate
in solving a problem. During this mixed-initiatipeoblem solving phase, Disciple learns not
only from the contributions of the expert, but afismm its own successful or unsuccessful
problem solving attempts, which lead to the refiratrof the learned rules. At the same time,

Disciple may extend the object ontology with nevjegts and features.
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Table 3: The Refinement Problem.

GIVEN:

* A plausible version space task reduction rule R.

* A positive or a negative example E of the rule @eorrect or an incorrect task reductign
step that has the same IF and THEN tasks as R).

* A knowledge base that includes an object ontologyaset of task reduction rules.

* A subject matter expert that understands why thle taduction step is correct or incorrect
and can answer the agent’s questions.

DETERMINE:
» Arefined rule that covers the example if it isifige, or does not cover the example if it
is negative.

* An extended object ontology (if needed for rulenement).

The rule refinement problem and methods are predantTables 3, 4 and 5. The result
of the rule learning process described in Tablaibustrated above is a rule with a main
plausible version space condition. During rulerrefnent, however, the rule may accumulate
several “except when” plausible version space d¢and. For that reason, Tables 3 and Table 4
assume that the rule R to be refined, based oextwmple E, has both a partially learned main
condition and a partially learned “except when” dition. These methods are extended naturally
when there are several such conditions. Figureo@/skan abstract representation of the rule’s
conditions. The new (positive or negative) exangslthe rule (and of the rule’s condition) may
be situated in one of several relevant regionsdisated in Figure 7. The way the rule is refined
depends on the type of the example and the regiwrnich it is situated, as described in Tables

3 and 4. In the following we will illustrate thesesthods.
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Table 4: Rule refinement with a positive example.

1. If the positive example E is covered by ML asahot covered by XU (case 1 in Figure 7),
then the rule does not need to be refined becaesexample is correctly classified as
positive by the current rule.

2. If E is covered by MU, but it is not coveredMy. and XU (case 2 in Figure 7), then
minimally generalize ML to cover E and remain lgeseral than MU. Remove also from
MU the elements that do not cover E.

Ul

3. If E is not covered by MU (cases 3, 4, and Bigure 7), or if E is covered by XL (cases
6, and 7 in Figure 7), then keep E as a positieegtton of the rule.

4. If E is covered by ML and XU, but it is not coed by XL (case 8 in Figure 7), then
interact with the expert to find an explanatiorited form: “The task reduction step is correq
becausejlis G,” where Gis a concept from the ontology. If such an expliamas found,
then XU is minimally specialized to no longer co@rOtherwise, E is kept as positive
exception.

—+

5. If E is covered by MU and XU, but it is not coed by ML and XL (case 9 in Figure 7),
then minimally generalize ML to cover E and remlass general than MU. Also remove
from MU the elements that do not cover E. Thenioomt as in step 4.

As indicated in Figure 5, Disciple-RKF applied Rdl¢éo reduce the task “Determine a
center of gravity for a member of European_Axis 3,94enerating an example that is covered
by the plausible upper bound condition of the rililes reduction was accepted by the expert as
correct. Therefore, Disciple generalized the plalediower bound condition to cover it. For
instance, European_Axis_ 1943 is a multi_memberefdrat it is not an
equal_partner_multi_state alliance. It is a dominpartner_multi_state_alliance dominated by
Germany_1943. As a consequence, Disciple-RKF autoatlst generalizes the plausible lower
bound condition of the rule to cover this examplee refined rule is shown in the left-hand side
of Figure 8. This refined rule is then generating task reduction from the bottom part of Figure
5. Although this example is covered by the plagsibiver bound condition of the rule, the

expert rejects the reduction as incorrect. Thisvshiinat the plausible lower bound condition is
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Table 5: Rule refinement with a negative example.

1. If the negative example E is covered by ML and not covered by XU (case 1 in Figure
7), then interact with the subject matter expefirtd an explanation of why E is a wrong task
reduction step. If an explanation EX is found, thgenerate a new Except When plausible
version space condition and add it to the rule e@ifse, keep E as a negative exception.

2. If E is covered by MU but it is not covered by Mnd by XU (case 2 in Figure 7) then

interact with the expert to find an explanatiowmdify E is a wrong task reduction step. If an
explanation EX is found and it has the formisinot a ¢G” where G is a concept covered by
MU, then specialize MU to be covered by Gtherwise, if another type of explanation EX i
found then learn a new Except When condition baseit, and add this condition to the ruleg.

7]

3. If E is not covered by MU (cases 3, 4, 5 in FF&yy), or it is covered by XL (cases 5, 6, 7|{in
Figure 7), then the rule does not need to be réfireeause the example is correctly classified
as negative by the current rule.

4. If E is covered by ML and XU but it is not coedrby XL (case 8 in Figure 7), or E is
covered by MU and XU but it is not covered by MLdaXL (case 9 in Figure 7), then

minimally generalize XL to cover E and specializd ¥ no longer include the concepts that
do not cover E.

not more general than the concept to be learneid \(amild have been the case in the classical
candidate elimination algorithm) and it would needbe specialized.

This rejection of the reduction proposed by DiseiRKF initiates an explanation
generation interaction during which the expert wale to help the agent understand why the
reduction step is incorrect. The explanation o tailure is that Finland_1943 has only a minor
military contribution to European_Axis_1943 and iat) therefore, provide the center of gravity
of this alliance. The actual failure explanatiorpeessed with the terms from the object
ontology) has the form:

“Finaland_1943 has_as_military_contribution miltacontribution_of Finaland_1943 is
minor_military_contribution”

Based on this failure explanation, Disciple_ RKFgyates a plausible version space

except when condition and adds it to the rulendgated in the right hand side of Figure 8. In
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the future, this rule will only apply to situatiom$ere the main condition is satisfied and the
except when condition is not satisfied.

Notice that the addition of the except when condigpecializes both bounds of the
applicability condition of the rule. Other typesfailure explanations may lead to different
modifications of Rule 4. For instance, the failesglanation may have had the form
“Finland_1943 is not a major_ally,” if “major_ally¥ould have been part of the object ontology
(which it is not). In such a case, Disciple-RKF Wwbnot add an except when condition but it
would specialize both bounds of the main conditmnover only “major_ally.” Yet another
possibility is to find an additional feature of thesitive examples of the rule which is not a
feature of the current negative example. This featvould then be added to the corresponding
object from the main condition (both in the uppeuid and in the lower bound). Additional
negative examples may lead to additional exceptwvdomaditions and specializations of the main

condition.

XU: Except When Condition

MU: Main Condition Plausible Upper Bound

Plausible Upper Bound

ML: Main Condition
Plausible Lower Bound

Universe of
Instances

Figure 7: Possible regions for a new (positive egative) example of a rule.
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It may be the case that the actual explanatiom@&@mple contains elements that are
not part of the object ontology. In such situatiddsciple-RKF elicits these elements from the
expert and adds them to the ontology as new cosiceptew features. Thus the learning process
is performed in an evolving representation spaaghich the object ontology (which is used as
the generalization hierarchy for learning) may bmdified at any time. If the ontology is
modified, the learned rules may no longer be corigeerefore, the rules need to be relearned.
This can be automatically done if the system keélep®xamples and the explanations from
which the rules were learned. However, differergtregles and explanations of a rule contain

instances that existed in different scenarios @arld War 1l or Afghanistan 2001-2002).

Rule 4 after Positive Example #2 Rule 4 after Negative Example #3

IF E___ :
Determine a center of gravity for a Determine a center of gravity for a

member of a force member of a force
The force is 201 The force is 201

Main Condition
Plausible Upper Bound Condition

?01 is multi_member_force
has_as_member 7?02

Main Condition
Plausible Upper Bound Condition
?01 is multi_member_force

has_as_member 2?02
202 is force ?02 is force

Plausible Lower Bound Condition Plausible Lower Bound Condition

. . _ ot i . .
201 is multi_state_alliance °01 is muIU_state_aI!;ance
has_as_member ?02 has_as_member 7?02

202 is single state force ?02 is single_state force

THEN Except When Condition
Determine a center of gravity for a force Plausible Upper Bound Condition
The force is 202 ?02 is force

has_as_military_contribution 2?03
?03 is minor_military contribution

Plausible Lower Bound Condition

?02 is single_state_force

has_as_military_contribution 2?03
?03 is minor_military contribution
THEN

Determine a center of gravity for a force
The force is 202

Fiaure 8: Refinerents o Rule 4
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Therefore, Disciple keeps minimal generalizatiohthe examples and explanations that do not
contain any instance and use these minimally génedaexamples and explanations to

regenerate the rules when the object ontology asng

7. DEPLOYMENT AND AGENT TRAINING EXPERIMENTS

Successive versions of Disciple-RKF were used maaurses at the US Army War College
since 2001, while still under research and develgnbecoming part of their regular syllabus
(Tecuci et al., 2002a; 2002b; 2004a). For the “Catselies in Center of Gravity Analysis”
course, which is offered twice a year, Disciple-RK&s taught based on the expertise of Prof.
Jerome Comello, the course’s instructor. Then théents used Disciple-RKF as an intelligent
assistant that helped them to develop a centerarity analysis of a war scenaribhis
demonstrates that the Disciple approach can be tsegvelop agents that have been found to
be useful for a complex military domain.

In the second course, “Military Applications oftéicial Intelligence,” which was
offered once a year between 2001 and 2003, therstsidwho were subject matter experts at the
rank of lieutenant colonel or colonel) taught peedisciple-RKF agents their own expertise in
center of gravity determination and then evalusietth the developed agents and the
development process. Figure 9 presents the mogtlegrof these experiments, performed in
Spring 2003 (Tecuci et al., 2004b).

Before starting the experiment, Disciple-RKF wasned to identify leaders as center of
gravity candidates. The knowledge base of this tagemtained the definitions of 432 concepts
and features and 18 task reduction rules. Howéleragent had no knowledge of how to test the

identified candidates. We then performed a joimhdim analysis and ontology development
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with all the experts by considering the examplésting whether Saddam Hussein, in the Iraq
2003 scenario, would have all the required critazgdabilities to be the center of gravity for Iraqg.
Based on this domain analysis, we have extendedrtodogy of Disciple-RKF with the
definition of 37 new concepts and features idegdifivith the help of the experts.

The 13 subject matter experts from the class wexe grouped into five teams (of 2 or 3
experts each), and each team was given a copg @xiended Disciple-RKF agent. Next, each
team trained its agent to test whether a leadeoha®r two critical capabilities, as indicated in
Figure 9. For instance, Team 1 trained its agem toatest whether a leader had the critical
capabilities of staying informed and being irreplalcle. The training was done based on three
scenarios (lrag 2003, Arab-Israeli 1973, and Waremor 2003) and the experts teaching

Disciple-RKF how to test each strategic leader fthese scenarios. As a result of the training

Initial KB 432 concepts and features, 18 rules

Domain analysis and ontology or COG identification for leaders
development (KE+SME) ¥

L B

All subject matter

experts (SME) | \J\:‘qj

L8 Knowledge
ngineer (KE)

— —
Parallel KB development it

) . Iraq 2003
(SME assisted by KE) 37 acquired concepts and Arab-Israeli 1973
features for COG testing War on Terror 2003

|

=/ | DISCIPLE-COG

[
be protected
be driving force

5 features g 33 rules 3 features
10 rules 23 rules
KB merging (KE) Learned features, tasks, rules
gg;ggga fflzi;usres 5h 28min average training time / team
Refined 12 rules 3.53 average rule learning rate / team
Final KB:

+9 features = 478 concepts and features COG identification and testing (leaders)
+95 rules 3113 rules

h | p Testing scenario:
¢ )
6 =y b, P oL North Korea 2003
Correctness = 98.15% ( 30 e P N fﬂ N )
W b I b N B e o

Figure 9. Experiment of rapid knowledge base dguakent by subject matter experts.
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performed by the experts, the knowledge base df Bariple-RKF agent was extended with
new object features and rules, as indicated inrEi§uFor instance, the knowledge base of the
agent trained by Team 1 was extended with 5 fesitame 10 task reduction rules. The average
training time per team was 5 hours and 28 minutestlae average rule learning rate per team
was 3.53 rules/hour. This included time spent linhed agent training activities (i.e., specifying
the three training scenarios, modeling expertsaoaag, rule learning, mixed-initiative problem
solving, and rule refinement).

After the training of the 5 Disciple-RKF agentsgithknowledge bases were merged by a
knowledge engineer, who used the knowledge basgimgetool of Disciple-RKF. The
knowledge engineer also performed a general tesfitige integrated knowledge base, in which
he included the 10 features and 99 rules learnadn®this process, two semantically
equivalent features were unified, 4 rules weretddleand 12 other rules were refined by the
knowledge engineer. The other 8 features and &3 tehrned were not changed. Most of the
modifications were done to remove rule redundanaige specialize overly general rules.

Next, each team tested the integrated agent owacenario (North Korea 2003) and
was asked to judge the correctness of each reapstdp performed by the agent, but only for
the capabilities for which that team performedttiaging of the agent. The result was 98.15%
correctness. Moreover, at the end of the experifeaxperts strongly agreed, 4 agreed, 1 was
neutral, and 1 disagreed with the statemeéttiifik that a subject matter expert can use Dikcip
to build an agent, with limited assistance frormawledge engineér

This is the first time that such an agent trairang knowledge bases merging experiment
has been performed, and the obtained results suiygoclaim that the Disciple learning-based

approach can be used to develop complex knowledgeebagents.
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8. RELATED RESEARCH AND DISCUSSION

To our knowledge, Disciple-RKF, as a whole, is guihique, both in the field of Machine
Learning and in the field of Knowledge Acquisitiand we are not aware of any other system
that is similar in terms of capabilities and methoaol achieve them. However, some of its aspects
can be compared with other systems. For instanae, the point of view of its general approach
to learning, Disciple-RKF is mostly related to thider work on apprenticeship learning
(DeRaedt 1991; Mahadevan et al. 1993; Mitchell.etl885; Tecuci 1988; Wilkins 1990).
However, none of these older systems have the tdwahturity and scalability required for
practical applications. Nor are they integratedgdor building end-to-end knowledge-based
agents, going through all the phases of agent dprednt, including modeling expert’'s
reasoning, ontology development and learning, aixédrvinitiative problem solving and
learning. The type of user was not a concern cfetmder apprentice systems, while Disciple-
RKF was specially developed to allow a subject enakpert who does not have prior computer
science or knowledge engineering experience, to itral his was achieved by using multiple
interactions with the expert and using multistrgtegrning methods that incorporate learning
from examples, learning from explanations, andiieay by analogy and experimentation.

Because the idea of version spaces plays sualkcekrole in Disciple-RKF, we can also
compare it with other systems based on this gea@gioach, such as (Mitchell et al., 1983;
Hirsh, 1989; Sebag, 1996 ). We are again not anfaey system based on the version space
representation that can deal with complex appbcati One cause of this is the combinatorial
explosion of the bounds of the version space. Pigds able to avoid this combinatorial

explosion because of the use of the explanatiatsdentify the essential features of the
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concepts to be learned. Another difference isEhstiple-RKF can learn an approximation of a
concept even if the actual concept is not reprasdmin its language, and can learn concepts
with exceptions. One of our future research dicgctvith respect to the plausible version space
representation is the use of disjunctions and m&again the plausible version spaces of
individual variables, such as ?01 in Figure X, gltre lines already investigated by Boicu
(2002). This will allow Disciple to learn the begiproximations of the concepts, when they are
not representable.

Finally, Disciple-RKF can be compared with thelsoor building knowledge-based
systems, such as CYC (Lenat, 1995), EXPECT (Kim@ihd1999), or Loom (MacGregor,
1991). These tools make very little use of maclaaening, while learning plays a crucial role in
Disciple-RKF. Although Disciple-RKF has not beenedtly compared with these tools on the
same problems, two previous versions of Discipieciple-WA (Tecuci et al., 1999) and
Disciple-COA (Boicu et al., 2000; Tecuci et al.02), have been compared with these tools, as
part of the DARPA'’s High Performance Knowledge Bagegram (Cohen et al., 1998), and
demonstrated both higher knowledge acquisitiorsrated better performance of the resulting
systems. Rule 4 in Figure 8 helps explain why Discperformed so well. In the case of the
other systems, a knowledge engineer needed to ithadefine and debug the problem solving
rules. With Disciple, the domain expert (possikdgiated by a knowledge engineer) needs only
to define specific reductions like those in Figbrdecause Disciple will learn and refine the
corresponding rules.

There are, however, many ways in which DiscipleFRian still be considerably
improved. For instance, one needs to develop monegul methods for helping the expert to

express his or her reasoning process using theeadsiction paradigm, along the path opened by
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the Modeling Advisor described in (Boicu, 2002).r@gent training experiments have also
revealed that the mixed-initiative learning methotiBisciple-RKF could be significantly
empowered by developing the natural language psotgsapabilities of the system. More
powerful ontology learning methods are also neg&¢ahescu et al., 2003). Finally, because the
expert who teaches Disciple-RKF has no formal ingimn knowledge engineering, the
knowledge pieces learned by the agent and the laugel base itself will not be optimally
represented, and will require periodic revisionghm®/knowledge engineer. Examples of
encountered problems with the knowledge base anars#c inconsistencies within a rule, and
the violation of certain knowledge engineering pipes. It is therefore necessary to develop
mixed-initiative knowledge base reformulation aqdimization methods to identify and correct

such problems in the knowledge base.
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